Test Review

Assuming all intersections are perpendicular and that each segment is a portion of a line identify the following:

1. A pair of lines skew to line $A B$
2. A pair of lines perpendicular to $A B$
3. A pair of lines parallel to $A B$
4. A plane that intersects Plane $A B C$ and it's intersection

Using the diagram, identify all the following angle pairs:

Corresponding

Alternate Interior

Alternate Exterior

Consecutive interior
Vertical

Angles that for linear pairs with angle 4

If line a is parallel to line b, find x and y

(37)

Is line m parallel to line n (yes or no)? If yes, what theorem did you use?

(2?)

Find the shortest distance from point $A(2,6)$ and the line $y=-x+4$

Find the shortest distance from point $A(-9,-3)$ and the line $y=x-6$

Ch. 3 Page 2

$$
(1 ?)
$$

Write an equation of a line passing through $(4,6)$ and is parallel to $y=3 x+4$
(2?)

Write an equation of a line perpendicular to $2 x-6 y=12$ and passes through $(-1,3)$.

> (2?)

Determine if the two lines are parallel,
perpendicular, or neither. You must show your
work!!!
$2 x-5 y=12$ and $-10 y+4 x=24 \quad$ Line 1 contains the points: $(1,2)$ and $(3,4)$
Line 2 contains the points: $(-1,2)$ and $(-3,4)$

$$
20 \text { Q's }
$$

