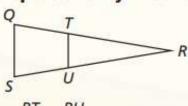
What You Will Learn

- Use the Triangle Proportionality Theorem and its converse.
- Use other proportionality theorems.

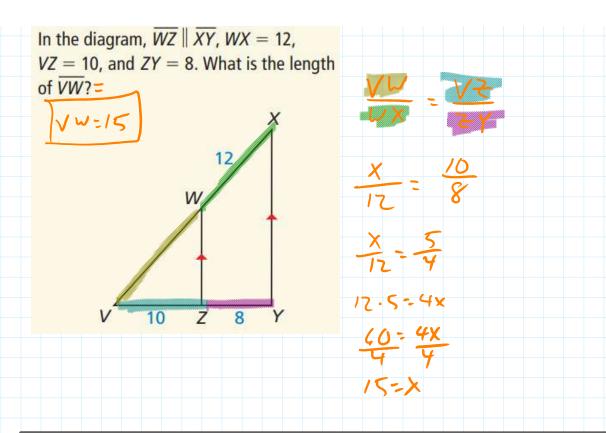
Theorem 8.6 Triangle Proportionality Theorem

If a line parallel to one side of a triangle intersects the other two sides, then it divides the two sides proportionally.

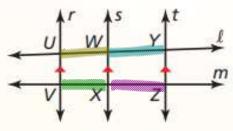

RIf $\overline{TU} \parallel \overline{QS}$, then $\frac{RT}{TO} = \frac{RU}{US}$.

Proof Ex. 27, p. 451

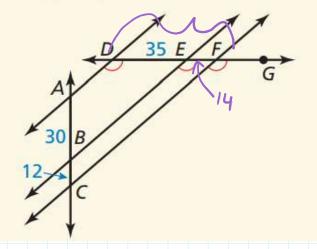
Theorem 8.7 Converse of the Triangle Proportionality Theorem


If a line divides two sides of a triangle proportionally, then it is parallel to the third side.

Proof Ex. 28, p. 451

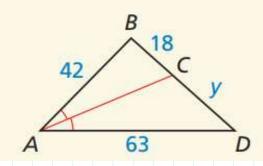

If $\frac{RT}{TQ} = \frac{RU}{US'}$ then $\overline{TU} \parallel \overline{QS}$.

Theorem 8.8 Three Parallel Lines Theorem


If three parallel lines intersect two transversals, then they divide the transversals proportionally.

Proof Ex. 32, p. 451

In the diagram, $\angle ADE$, $\angle BEF$, and $\angle CFG$ are all congruent. AB = 30, BC = 12, and DE = 35. Find DF.


Theorem 8.9 Triangle Angle Bisector Theorem

If a ray bisects an angle of a triangle, then it divides the opposite side into segments whose lengths are proportional to the lengths of the other two sides.

Proof Ex. 35, p. 452

In the diagram, $\angle BAC \cong \angle CAD$. Use the given lengths to find the length of \overline{CD} . $\angle D = \overline{Z7}$

Practice sec 8.4 pg.

450: 3-8A,

13-26A