What You Will Learn
Use medians and find the centroids of triangles.

$$
\begin{aligned}
& \text { Circuncrite-:-2 quidistant to each Vartey of } \Delta \\
&=\text { poinl of Concurraco (How it is crested) }
\end{aligned}
$$

$$
1 \text { bisectors }
$$

- Ca -be in, on, or outside

$$
\begin{aligned}
& \text { Incite: - Alurgs inside } \Delta \\
& \text { - equidistant to easel side of } \Delta \\
& \text { - Point of Concurrence (Hen it is urde) }
\end{aligned}
$$

Ag le bisectors.

Using the Median of a Triangle
A median of a triangle is a segment from a vertex to the midpoint of the opposite side. The three medians of a triangle are concurrent. The point of concurrency, called the centroid, is inside the triangle.

Theorem 6.7 Centroid Theorem
The centroid of a triangle is two-thirds of the distance from each vertex to the midpoint of the opposite side.
The medians of $\triangle A B C$ meet at point P, and $A P=\frac{2}{3} A E, B P=\frac{2}{3} B F$, and $C P=\frac{2}{3} C D$.

Proof BigIdeasMath.com

In $\triangle R S T$, point Q is the centroid, and $V Q=5$. Find $R Q$ and $R V$.

$$
\begin{aligned}
& U T=45 \\
& U Q=15 \\
& Q T=30
\end{aligned}
$$

$$
\begin{aligned}
& 15=x \\
& V R=15 \\
& S Q=18 \\
& Q W=9 \\
& S W=27 \\
& x=\frac{1}{3} \cdot 45 \\
& x=15
\end{aligned}
$$

Find the coordinates of the centroid of $\triangle A B C$ with vertices $A(0,4), B(-4,-2)$, and $C(7,1)$.
$\left(\frac{0+-4}{2}, \frac{4+-2}{2}\right)$
$\left(-\frac{4}{2}, \frac{2}{2}\right)=(-2,1)$
$\left(\frac{0+7}{2}, \frac{4+1}{2}\right)$
$C(7,1)$
$\sqrt{\left(x_{2}-x\right)}$
$\left(\frac{7}{2}, \frac{5}{2}\right)$

$$
\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}, y_{1}\right)^{2}}
$$

Practice sec 6.3 pg.
 324: 2-18A
 Pg. 328: 9,10

