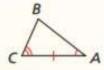
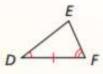
What You Will Learn

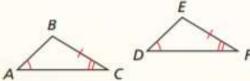

Use the ASA and AAS Congruence Theorems.


Theorem 5.10 Angle-Side-Angle (ASA) Congruence Theorem

If two angles and the included side of one triangle are congruent to two angles and the included side of a second triangle, then the two triangles are congruent.

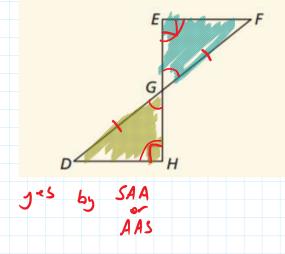
If $\angle A \cong \angle D$, $\overline{AC} \cong \overline{DF}$, and $\angle C \cong \angle F$, then $\triangle ABC \cong \triangle DEF$.

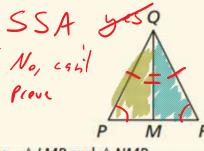
Proof p. 270



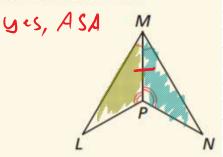
Theorem 5.11 Angle-Angle-Side (AAS) Congruence Theorem

If two angles and a non-included side of one triangle are congruent to two angles and the corresponding non-included side of a second triangle, then the two triangles are congruent.

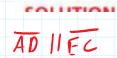

If $\angle A \cong \angle D$, $\angle C \cong \angle F$, and $\overline{BC} \cong \overline{EF}$, then $\triangle ABC \cong \triangle DEF$.

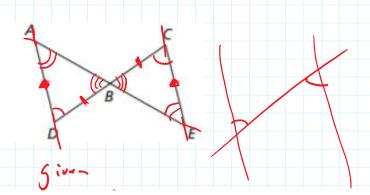

ASA SSS SAS SAA~AAS HL

Can the triangles be proven congruent with the information given in the diagram? If so, state the theorem you would use.


a. $\triangle EFG$ and $\triangle HDG$

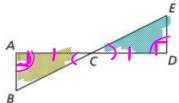
b. $\triangle PQM$ and $\triangle RQM$


c. $\triangle LMP$ and $\triangle NMP$



Write a proof.

Given $\overline{AD} \parallel \overline{EC}, \overline{BD} \cong \overline{BC}$


Prove $\triangle ABD \cong \triangle EBC$

	Ā	D	11	Ē	-	•			
	4	Ľ) :	~	۷	۷			
				_					
4	_ /	4 D	D	~	2	۷.	86		
	Š	A	3	P	?	۵	E	B	_

2. In the diagram, $\overline{AB} \perp \overline{AD}$, $\overline{DE} \perp \overline{AD}$, and $\overline{AC} \cong \overline{DC}$. Prove $\triangle ABC \cong \triangle DEC$.

ABIAD

DELAD

GiVIL

ACID

ACID

ACID

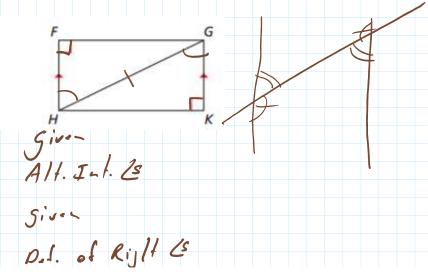
ACID

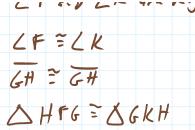
ACID

ACID

ACID

ACID


ASA


Write a proof.

Given $\overline{HF} \parallel \overline{GK}, \angle F$ and $\angle K$ are right angles.

Prove $\triangle HFG \cong \triangle GKH$

HF | GK LFHG= CHGK CFaJ LK GAR; H LS LF= LK

D]_[•	0	f	R	ijſ	14	2	<u>S</u>
K	af	`L,	lya	f	2	۷			
A	A	۷							

Triangle Congruence Theorems

You have learned five methods for proving that triangles are congruent.

SAS	SSS	HL (right ≜ only)	ASA	AAS
B D F	B D F	B D F	B D F	SA4 E
Two sides and the included angle are congruent.	All three sides are congruent.	The hypotenuse and one of the legs are congruent.	Two angles and the included side are congruent.	Two angles and a non-included side are congruent.

Practice sec 5.6 pg. 274: 2-12A, 17,

19 19