What You Will Learn

- Use the ASA and AAS Congruence Theorems.

Theorem 5.10 Angle-Side-Angle (ASA) Congruence Theorem

If two angles and the included side of one triangle are congruent to two angles and the included side of a second triangle, then the two triangles are congruent.

If $\angle A \cong \angle D, \overline{A C} \cong \overline{D F}$, and $\angle C \cong \angle F$, then $\triangle A B C \cong \triangle D E F$.

Proof p. 270

Theorem 5.11 Angle-Angle-Side (AAS) Congruence Theorem

If two angles and a non-included side of one triangle are congruent to two angles and the corresponding non-included side of a second triangle, then the two triangles are congruent.

If $\angle A \cong \angle D, \angle C \cong \angle F$, and $\overline{B C} \cong \overline{E F}$, then $\triangle A B C \cong \triangle D E F$.

$$
\begin{array}{ll}
A S A & S S S \\
\text { SAS } & \text { SAAッAAS }
\end{array}
$$

Can the triangles be proven congruent with the information given in the diagram? If so, state the theorem you would use.
a. $\triangle E F G$ and $\triangle H D G$

yes

b. $\triangle P Q M$ and $\triangle R Q M$

c. $\triangle L M P$ and $\triangle N M P$

Write a proof.
Given $\overline{A D} \| \overline{E C}, \overline{B D} \cong \overline{B C}$
Prove $\triangle A B D \cong \triangle E B C$
ant tina
$\overline{A D} \| E C$

$$
\begin{aligned}
& \overline{A D} \| \overline{E C} \\
& \angle D \cong \angle C \\
& \angle A \cong \angle E \\
& \overline{B D} \cong \overline{B C} \\
& \angle A D D \cong \angle C B E \\
& \triangle A D D \cong \triangle E B C
\end{aligned}
$$

given 1
Alt. Int. Ls
Alt. Int. Cs
given
Vert. Ls
ASA or AAS OSAA
AAA
2. In the diagram, $\overline{A B} \perp \overline{A D}, \overline{D E} \perp \overline{A D}$, and $\overline{A C} \cong \overline{D C}$. Prove $\triangle A B C \cong \triangle D E C$.

$\overline{A B} \perp \overline{A D}$	given
$D E \perp \overline{A B}$	gie.
$\angle A \cong \angle D$	Dat. \perp
$\overline{A C} \cong \overline{D C}$	given
$\angle A C B=\angle E C D$	Vat \angle
$\triangle A B C \triangle D E C$	$A S A$

Write a proof.
Given $\overline{H F} \| \overline{G K}, \angle F$ and $\angle K$ are right angles.
Prove $\triangle H F G \cong \triangle G K H$

$$
\begin{aligned}
& \overline{H F} \| \overline{G K} \\
& \angle F H G \Xi \angle H G K \\
& \angle F \cdot . \quad \angle K \text { ara } R_{j} / H \angle S \\
& \angle F \cong \angle K
\end{aligned}
$$

sivan
Dol. of Rill <s

Triangle Congruence Theorems

You have learned five methods for proving that triangles are congruent.

Practice sec 5.6 pg .

274: 2-12A, 17.
19

