Essential Question

What conjectures can you make about a figure reflected in two lines?

Identifying Congruent Figures Defition

Two geometric figures are congruent figures if and only if there is a rigid motion or a composition of rigid motions that maps one of the figures onto the other. Congruent figures have the same size and shape.

same size and shape

different sizes or shapes

Identify the Congruent shapes:

$$
\begin{aligned}
& \triangle D E F \cong \triangle C B A \\
& \triangle D E F \cong \triangle A D C \\
& \square G H I J \cong \triangle N P Q R \\
& \square G H J \cong \triangle Q R N P
\end{aligned}
$$

Describe the congruence transformation from $\triangle J K L \rightarrow \Delta M N P$

There are 2 possibilities, can you find both?

S Theorem

Theorem 4.2 Reflections in Parallel Lines Theorem
If lines k and m are parallel, then a reflection in line k followed by a reflection in line m is the same as a translation.

If $A^{\prime \prime}$ is the image of A, then

1. $\overline{A A^{\prime \prime}}$ is perpendicular to k and m, and
2. $A A^{\prime \prime}=2 d$, where d is the distance
 between k and m.

Proof Ex. 31, p. 206

In the diagram, a reflection in line k maps $\overline{G H}$ to $\overline{G^{\prime} H^{\prime}}$. A reflection in line m maps $\overline{G^{\prime} H^{\prime}}$ to $\overline{G^{\prime \prime} H^{\prime \prime}}$. Also, $H B=9$ and $D H^{\prime \prime}=4$.
a. Name any segments congruent to each segment: $\overline{G H}, \overline{H B}$, and $\overline{G A}$.

b. Does $A C=B D$? Explain. yes, d_{2} d. of |l lines
c. What is the length of $\overline{G G^{\prime \prime}}$?

$$
2(A C)=2 C
$$

$$
\begin{aligned}
& \overline{G H} \cong \overline{G^{\prime} H^{\prime}} \cong \overline{G^{\prime \prime} H^{\prime \prime}} \\
& \overline{H B} \cong \overline{B H^{\prime}} \\
& G A \cong \overline{A G^{\prime}}
\end{aligned}
$$

Use the figure. The distance between line k and line m is 1.6 centimeters.
4. The preimage is reflected in line k, then in line m. Describe a single transformation that maps the blue figure to the green figure.

$$
\text { translation }\langle 3.2,0\rangle
$$

5. What is the relationship between $\overline{P P^{\prime}}$ and line k ? Explain.

$$
\begin{aligned}
& k \text { ? Explain. } \perp \text { because id is a } \\
& \text { refladion in } k
\end{aligned}
$$

6. What is the distance between P and $P^{\prime \prime}$?

G Theorem

Theorem 4.3 Reflections in Intersecting Lines Theorem
If lines k and m intersect at point P, then a reflection in line k followed by a reflection in line m is the same as a rotation about point P.

The angle of rotation is $2 x^{\circ}$, where x° is the measure of the acute or right angle formed by lines k and m.

$m \angle B P B^{\prime \prime}=2 x^{\circ}$

Proof Ex. 31, p. 250

In the diagram, the figure is reflected in line k. The image is then reflected in line m. Describe a single transformation that maps F to $F^{\prime \prime}$.

$$
140^{\circ} \text { rotation about } P
$$

Practice sec 4.4; Pg. 204: 1, 3-21EO

