What You Will Learn

- Perform rotations.
- Perform compositions with rotations.
- Identify rotational symmetry.

Rotations

A rotation is a transformation in which a figure is turned about a fixed point called the center of rotation. Rays drawn from the center of rotation to a point and its image form the angle of rotation.

The figure above shows a 40° counterclockwise rotation. Rotations can be clockwise or counterclockwise. In this chapter, all rotations are counterclockwise unless otherwise noted.

You can rotate a figure more than 180°. The diagram shows rotations of point $A 130^{\circ}, 220^{\circ}$, and 310° about the origin. Notice that point A and its images all lie on the same circle. A rotation of 360° maps a figure onto itself.
all ingos are gain to be

- fined distance fro- the
center et rotation, regardless
et direction or magnitude of rotation.

Mapping

Coordinate Rules for Rotations about the Origin

When a point (a, b) is rotated counterclockwise about the origin, the following are true.

- For a rotation of 90°,

$$
(a, b) \rightarrow(-b, a)
$$

- For a rotation of 180°,

$$
(a, b) \rightarrow(-a,-b)
$$

- For a rotation of 270°,

$$
(a, b) \rightarrow(b,-a) .
$$

- What would the mapping
 be for a rotation of 360° ?
$(a, b) \rightarrow(a, b)$

Graph $\triangle A B C$ with vertices $A(3,1), B(3,4)$, and $C(1,1)$ and its image after a 180° rotation about the origin.

$$
(a, b) \rightarrow(a,-b)
$$

2. Graph $\triangle J K L$ with vertices $J(3,0), K(4,3)$, and $L(6,0)$ and its image after a 90° rotation about the origin.

$$
(a, b) \rightarrow(-b, a)
$$

Graph $\overline{R S}$ with endpoints $R(1,-3)$ and $S(2,-6)$ and its image after the composition. Rotation: 180° about the origin Reflection; in the y-axis

$$
\begin{aligned}
& (a, b) \rightarrow(-a,-b) \\
& (a, b) \rightarrow(-a, b)
\end{aligned}
$$

5. Graph $\overline{A B}$ with endpoints $A(-4,4)$ and $B(-1,7)$ and its image after the composition.

Translation: $(x, y) \rightarrow(x-2, y-1)$
Rotation: 90° about the origin
$(a, b) \rightarrow(-b, a)$

Identifying Rotational Symmetry
A figure in the plane has rotational symmetry when the figure can be mapped onto itself by a rotation of 180° or less about the center of the figure. This point is the center of symmetry. Note that the rotation can be either clockwise or counterclockwise.

For example, the figure below has rotational symmetry, because a rotation of either 90° or 180° maps the figure onto itself (although a rotation of 45° does not).

Does the figure have rotational symmetry?
If so, describe any rotations that map the
figure onto itself.
a.

b.

C.

yes, 180°

Practice sec 4.3 pg . 194: 7-23EO

