What You Will Learn

Perform reflections.

Reflections

A reflection is a transformation that uses a line like a mirror to reflect a figure. The mirror line is called the line of reflection.

A reflection in a line m maps every point P in the plane to a point P^{\prime}, so that for each point one of the following properties is true.

- If P is not on m, then m is the perpendicular bisector of $\overline{P P^{\prime}}$, or
- If P is on m, then $P=P^{\prime}$.

point P not on m

point P on m

Graph $\triangle A B C$ with vertices $A(1,3)$,
$B(5,2)$, and $C(2,1)$ and its image after the reflection described.
a. In the line $n: x=-1$

b. In the line $m: y=3$

Graph triangle $A B C$ with vertices $A(1,3), B(5,2)$, and $C(2,1)$ and its image after the reflection described

1. $x=4$
2. $y=2$

Coordinate Rules for Reflections

- If (a, b) is reflected in the x-axis, then its image is the point $(a,-b)$.
- If (a, b) is reflected in the y-axis, then its image is the point $(-a, b)$.
- If (a, b) is reflected in the line $y=x$, then its image is the point (b, a).
- If (a, b) is reflected in the line $y=-x$, then its image is the point $(-b,-a)$.

$$
\begin{aligned}
& y=x \\
& y=-x+b
\end{aligned}
$$

Graph $\overline{A B}$ with endpoints $A(3,-1)$ and $B(3,2)$ and its image after a reflection in the line $y=x$.

$$
(a, b) \rightarrow(b, a)
$$

Graph $\overline{A B}$ with endpoints $A(3,-1)$ and $B(3,2)$ and its image after a reflection in

$$
\begin{aligned}
& \text { the line } y=-x \\
& (a, b) \rightarrow(-b,-9)
\end{aligned}
$$

Practice sec 4.1 pg . 186: 2, 3-15EO

