Translations and Vectors

A transformation is a function that moves or changes a figure in some way to produce a new figure called an image. Another name for the original figure is the preimage. The points on the preingage are the inputs for the transformation, and the points on the image are the outputs.

Catapillar

(3) Core Concept $\overrightarrow{A B} \stackrel{\rightharpoonup}{A B} A D \quad \overrightarrow{A B}$

Vectors

The diagram shows a vector. The initial point, or starting point, of the vector is P, and the terminal point, or ending point, is Q. The vector is named $\overrightarrow{P Q}$, which is read as "vector $P Q$." The horizontal component of $\overrightarrow{P Q}$ is 5 , and the vertical component is 3 . The component form of a vector combines the horizontal and vertical components. So, the component form of $\overrightarrow{P Q}$ is $\langle 5,3\rangle$.

Name the vector and write it in component form. If you were going to write it as a rule what would it be?

$$
\overrightarrow{P Q}\langle-4,5\rangle \text { - componal form }
$$

$$
(x+4 y+5)
$$

$$
\begin{aligned}
& (x+4, y+5) \\
& (x-4, y+5)
\end{aligned} \text { Rule }
$$

G) Core Concept

Translations
A translation moves every point of a figure the same distance in the same direction. More specifically, a translation maps, or moves, the points P and Q of a plane figure along a vector $\langle a, b\rangle$ to the points P^{\prime} and Q^{\prime}, so that one of the following statements is true.

- $P P^{\prime}=Q Q^{\prime}$ and $\overline{P P^{\prime}} \| \overline{Q Q^{\prime}}$, or

- $P P^{\prime}=Q Q^{\prime}$ and $\overline{P P^{\prime}}$ and $\overline{Q Q^{\prime}}$ are collinear.

What vector was applied to $\triangle A B C$ to get $\triangle A^{\prime} B^{\prime} C^{\prime}$? Write the vector in component form and write the translation in rule form.

$$
\begin{aligned}
& \langle 5,-3\rangle \\
& (x+5, y-3) \\
& (-7+5,3-3) \\
& (-2,0)
\end{aligned}
$$

Translate quad $A B C D$ with points $A(-1,2), B(-1,5), C(4,6), D(4,2)$ to quad $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$, by applying the vector $\langle 3,-1\rangle$.

Name the vector and write it in component form. If you were going to write it as a rule what would it be?

$$
\begin{array}{r}
\stackrel{\rightharpoonup}{B K}\langle-5,2\rangle \\
(x-5, y+2)
\end{array}
$$

Since a ridged translation d does not change length or angle measure what can be said about:

$m \angle R$ and $m \angle R^{\prime}$
=

$T R$ and $T^{\prime} R^{\prime}$
$=$
$m \angle T$ and $m \angle T^{\prime}$ $m \angle S$ and $m \angle S^{\prime}$
$=$
ニ

Draw triangle $A B C$ with points $A(1,2)$,
$B(1,4), C(3,2)$ and perform the following translations:

Translation \#1: $\langle 4,-2\rangle$.

Translation \#2: $\langle-3,1\rangle$.

Practice
Sec 4.1 Pg. 178:
1, 2, 3-25EO

