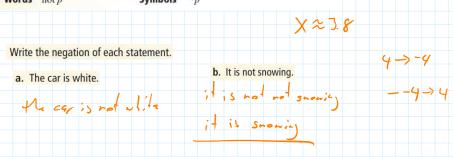
What You Will Learn

- Write conditional statements.
- Use definitions written as conditional statements.
- Write biconditional statements.


Conditional Statement

A **conditional statement** is a logical statement that has two parts, a *hypothesis p*) and a *conclusion* When a conditional statement is written in **if-then form**, the part contains the **hypothesis** and the "then" part contains the **conclusion**.

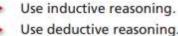
Words If p, then q.	Symbols $p \rightarrow q$ (read as " <i>p</i> implies <i>q</i> ")
hypothesis = p = co-clusion=g =	"f" "places to g
Use (H) to identify the hypothesis to identify the conclusion. Then re- each conditional in if-then form. a. $x > 5$ if $x > 3$. b. $x > 5$ if $x > 3$.	
X=383 X=4	litional Statements can be ofthe

Negation

The negation of a statement is the *opposite* of the original statement. To write the
negation of a statement p, you write the symbol for negation (\sim) before the letter.
So, "not p" is written $\sim p$.Wordsnot pSymbols $\sim p$

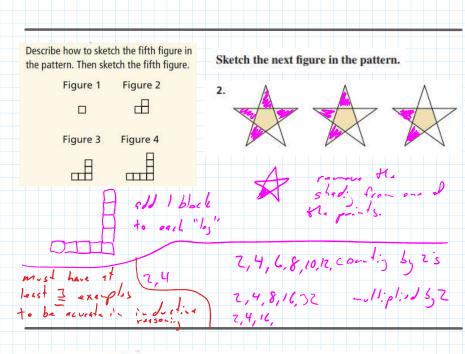
1 = not

 $\mathbf{\mathcal{N}}$


Related Conditionals
Consider the conditional statement below.
Words If p, then q. Symbols $p \rightarrow q$ Conditional $p \rightarrow q$
Converse To write the converse of a conditional statement, exchange the Statement
Words If q, then p. Symbols $q \rightarrow p$ Converse $q = 7p$
Inverse To write the inverse of a conditional statement, negate both the hypothesis and the conclusion. Words If not p, then not q. Symbols $\neg p \rightarrow \neg q$ is verse $\neg p \rightarrow \neg q$
Words If not p, then not q. Symbols $\sim p \rightarrow \sim q$ in various $\sim p \rightarrow \sim q$
Contrapositive To write the contrapositive of a conditional statement, first write the converse. Then negate both the hypothesis and $contrapositive \sim q \rightarrow \gamma \rho$
Words If not q , then not p . Symbols $\sim q \rightarrow \sim p$
A conditional statement and its contrapositive are either both true or both false. Similarly, the converse and inverse of a conditional statement are either both true or both false. In general, when two statements are both true or both false, they are called equivalent statements .
Let p be "you are in MSHS" and let q by "you are in the USA." Write each
statement in words and decide whether it is true or false.
a. The conditional statement $p \rightarrow q$.
X II ger are ; MSHS, the you are in the USA.
b. The conditional statement $q \rightarrow p$.
F If you are in the USA, then you are in Mistly.
c. The conditional statement $^{p} \rightarrow ^{q}$.
* If you are not in MSHS, then you are not in the USA
d. The conditional statement ~q→p.
TIS you are not in the USA, then you are not in MISHS.
Using Definitions You can write a definition as a conditional statement in if-then form or as its converse. Both the conditional statement and its converse are true for definitions. For example, provide the definition of a mark in the form of the state
Using Definitions grin Har USA
You can write a definitional statement in if-then form or as its converse. Both the conditional statement and its converse are true for definitions. For example,
consider the definition of perpendicular lines. If two lines intersect to form a right angle, then they are $T_{\mu}P \rightarrow q$ if jou are in one of the 50 states that you are in the USA

										ement i										-	- 1																					
	consi	der tl	he de	finiti	on of J	perpe	ndici	ular li	ines.	are tr		r defini	itions.	For e		le,	•	; {	-			27.0			0.			0+	1.	50	stel	/ 5	h.,	<u> </u>	50.0	60	- I	د ا	h. (رى	1	
			es inte cular			rm a i	right	angle	, then	they a	are		_	↓ ℓ		-			, J							Ì								· · ·	<i>J</i> ²		·u			1.	1	
										verse: 1 ersect t		1			Ÿ,	m	P	; {	-	yo	-	a	· - '	- 1	7.		SA	- †	1,.	J	N	512	- i -	9-	<u>رەر</u>	1	14	20		151	-5	
		-	ht any		l is p	ernen	dicul	ar to	line n	n" as l	- m									· (1	x			.0	L	ε ()	1		h	, ,				y .	H.	US	/
	Tour	an w	inte	mic	e is p	erpen	urcur	ai to	inic n	n" as l	± m.		2	¥ l⊥m																												
	Ricc	ndi	tion	2 10	tate	mon	+						1						2	:1				7		-1	1	US		И				1.	~ 0		J	F	L_ 4	50	sf	stos.
	Whe	nac	ondi	tiona	l state	emen	t and			rse are								~r			J~				10				1	120	ົ ປ											
					<i>tional</i> e "if a				bicon	ditior	nal st	ateme	ent is														,	. 0							• 2		-0	1	/			
		1.1	-		nly if					$p \leftrightarrow$				L	joc	, ,	614	- 2-	-	Η.	L	15,	4,	f,	r-d	•	5	jť	y	ec	er e	15	0 ~	-	f H	-	50	sti	7-5			
	Any	denr	nition	can	be w	ritten	i as a	DICO	naitio	onal st	tatem	ient.																	Ŭ													
•		_	-			-	-	-		_			_		_	-		-	_	_	_	_	_		_	_																
•	_	_	-			-	-			_								-	-		_	_			-	-																
											-	<u>۱</u>																														
										ntary		10.	Re	ewr	ite	the	def	ini	tion	ı of	a r	igh	t ar	igle	as	a si	ng	le b	icor	nditi	onal	stat	eme	nt.								
		-			gle b two				state	emen	t.		D	efin	itic	n	If a	n a	ngl	e is	aı	igh	nt ar	ngle	, th	en	its	mea	sur	e is	90°.											
	со	mple	eme	ntar	y, the	en th	ne su	um o	f the	2															1																	
,					ie an				7		1		6	<u> </u>	4	<u>۶</u>			1	6	1	1	4	e.,	1	;	ר ד 1	s./	04	4	;	1	f_{s}									
4.	•	9	in j	ر ر	97.		0	P	lac	~ •	(~)											1								1												
:2	9	.1	0	-1		4	ł	1_	s	~ •	Ĭ			~	e 4 5	sv r	•	is		90																						
1				-		.e	l		6	-g1,																																
							٩			"	5																															
; (-	9	0,																																							
											-	\square																														
•	-			-		-																					•															

What You Will Learn



Use deductive reasoning.

Inductive Reasoning

A conjecture is an unproven statement that is based on observations. You use inductive reasoning when you find a pattern in specific cases and then write a conjecture for the general case.

Conjectura is a educated grass.

Counterexample

To show that a conjecture is true, you must show that it is true for all cases. You can show that a conjecture is false, however, by finding just one counterexample. A counterexample is a specific case for which the conjecture is false.

A student makes a conjecture about absolute values. Find a counterexample to disprove the student's conjecture. Conjecture: The absolute value of the sum of two numbers is equal to the sum of the two numbers

6=6 |-5+6|=-5+6 a = -5h=6 Counterexample 1 = 1

Deductive Reasoning

Deductive reasoning uses facts, definitions, accepted properties, and the laws of logic to form a logical argument. This is different from inductive reasoning, which uses specific examples and patterns to form a conjecture.

Laws of Logic

Law of Detachment

If the hypothesis of a true conditional statement is true, then the conclusion is also true.) If jou are in MSHS, then you are in the USA. You goe in MSHS.

Law of Syllogism

of Syllogism $A: Y \circ q_{q_1} \to H_1 \vee S A$. If hypothesis p, then conclusion q. If these statements are true,

If hypothesis q, then conclusion r. If hypothesis p, then conclusion r.

then this statement is true.

|a+b|=a+b

a=2 |Z+4|= Z+4 b=4 |C|=C

8-79 2->r P-7r

If a figure is a square, then it is a rectangle. You know that quadrilateral ABCD is a square. Using the law of Detachment, what statement can you

make? quad. ADCD :s a rectuple

If 90° < m∠R < 180°, then ∠R is obtuse. The measure of ∠R is 155°. Using the Law of Detachment, what statement can you make?

LR is obturn Not possible

If possible, use the law of syllogism to write a new conditional statement that follows from the pair of true statements. If soccer practice is cancelled, then you can go to the mall after school. If it is raining

today, then soccer practice is cancelled. if it is raining, Ash yo can go to the

p-11

if it is raining the you can play video goods

If it is raining, then you can go inside. If you go inside, then you can play video games.

The table shows the sum of measures of the
interior angles in various polygons. What
conclusion can you make about the sum of
interior angles in an <i>n</i> -sided polygon?

Polygon	Number of sides	Sum of interior angles
Triangle	3	180°
Quadrilateral	4	360°
Pentagon	5	540°
Hexagon	6	720°

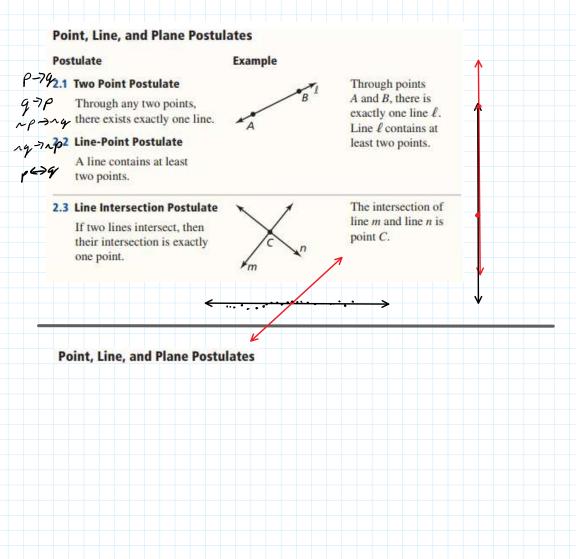
~2R=15

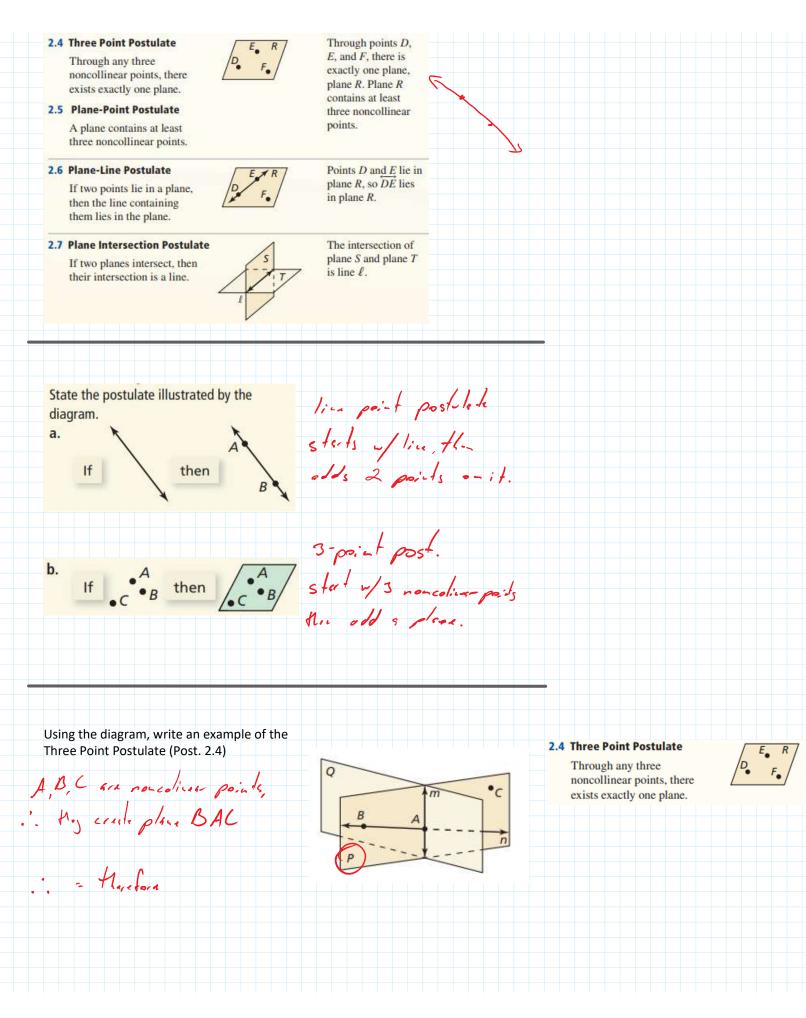
Decide whether inductive reasoning or deductive reasoning is used to reach the conclusion. Explain your reasoning.

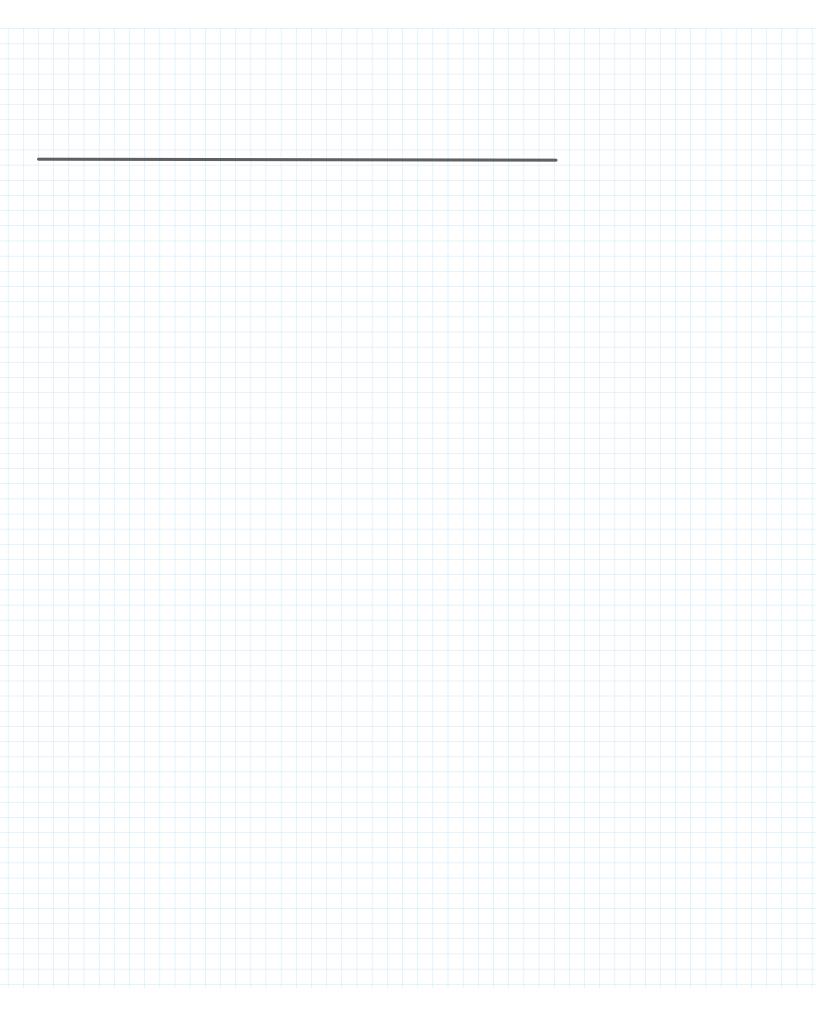

a. If the sum of the digits of a number is divisible by 3, then the number is divisible by 3. The sum of the digits of the number 147 is 12. So the number 147 is divisible by 3.

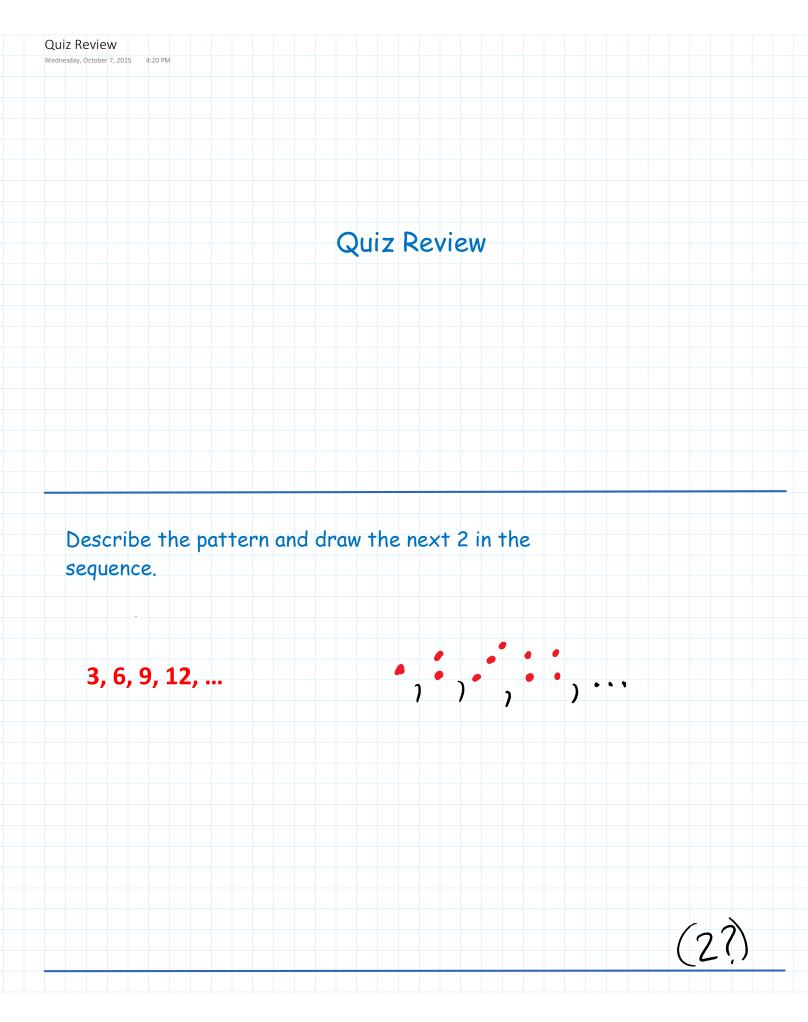
Deductive (Detatalment)

b. Each time you forget to do your math homework, your parents take away your phone privileges for a day. So, the next time you forget to do your math homework, you will lose your phone privileges.


Enduction Ressonic,




What You Will Learn


Identify postulates using diagrams. Sketch and interpret diagrams.

Sketch a diagram showing \overline{VX} intersecting \overrightarrow{UW} at V so that \overrightarrow{VX} is perpendicular to *UW* and *U*, *V*, and *W* are collinear. U W \checkmark Using the diagram, which statements cannot be assumed from it? • There exists a plane that contains points A, D, and E. Tive, 3-point post. E. • AB = BF. False Practice sec 2.3 pg. 87: 1-6A, 9-23EO

- a) Rewrite the conditional statement in if then form.
- b) Write the inverse.
- c) Write the converse
- d) Write the contrapositive
- e) Check each for validity.

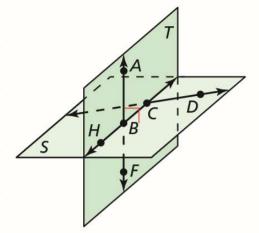
People who live in San Diego also live in California.

(27)

Give a counter example to each to show it is false.

1. The product of two negative numbers is always negative.

2. If complimentary angles sum to 90°, then each angle is 45°.


Use inductive reasoning to a) come up with a conjecture for the following. Then b) use deductive reasoning to show the conjecture to be true.

The sum of any 3 consecutive numbers...

Use the diagram to determine whether you can assume the statement is true.

- A) Points A, B, and C are coplanar
- B) Line AF is perpendicular to plane S.
- C) Plane T is perpendicular to Line BH
- D) Line CD lies on plane T
- E) Point B is the midpoint for Segment AF.

13 questions!

Study and good luck!

(5?)