What You Will Learn

- Find surface areas of spheres.
- Find volumes of spheres.

If a plane intersects a sphere, then the intersection is either a single point or a circle. If the plane contains the center of the sphere, then the intersection is a great circle of the sphere. The circumference of a great circle is the circumference of the sphere. Every
 great circle of a sphere separates the sphere into two congruent halves called hemispheres.

$$
\begin{aligned}
& \text { G.C- a cross-section of a spla.. Hot contains } \\
& \text { H. contar of Ha splore. }
\end{aligned}
$$

Surface Area of a Sphere

The surface area S of a sphere is

$$
S=4 \pi r^{2}
$$

where r is the radius of the sphere.

$$
\begin{aligned}
& \text { Surface crus at a spare. }=4 \times \text { Ares of "greet } \\
& \text { circle of the splore... }
\end{aligned}
$$

To understand the formula for the surface area of a sphere, think of a baseball. The surface area of a baseball is sewn from two congruent shapes, each of which resembles two joined circles.
So, the entire covering of the baseball consists of four circles, each with radius r. The area A of a circle with radius r is $A=\pi r^{2}$. So, the area of the covering can be approximated by $4 \pi r^{2}$. This is the formula for the surface area of a sphere.

Find the surface area of each sphere.

b.

$$
\begin{gathered}
c=2 \pi r \\
\frac{15 t_{m}}{2 \pi}=\frac{t \pi r}{x \pi}
\end{gathered}
$$

$$
7.5 \mathrm{~m}=r
$$

$$
\begin{aligned}
& S=4 \pi r^{2} \\
& 4 \pi(7.5-)^{2}
\end{aligned}
$$

$$
4 \pi 56.25 \mathrm{~m}^{2}
$$

$$
S=225 \pi n^{2}
$$

$$
S \approx 706.9 n^{2}
$$

Find the diameter of the sphere.

Volume of a Sphere

The volume V of a sphere is

$$
V=\frac{4}{3} \pi r^{3}
$$

where r is the radius of the sphere.

The surface area of a sphere is
676π square inches. Find the volume of the sphere.

$$
\begin{gathered}
S=4 \pi r^{2} \\
\frac{C 7 C \pi i^{2}}{4 \pi}=\frac{4 \pi r^{2}}{4 \pi} \\
\sqrt{169 i^{2}}=\sqrt{r^{2}}
\end{gathered}
$$

$$
\begin{gathered}
V=\frac{4}{3} \pi r^{3} \\
\quad \frac{4}{3} \pi(13 i)^{3} \\
\left.\frac{4}{3}(2197 i)^{3}\right)^{2} \pi \\
\left.\frac{V=2525.3 \pi i i^{3}}{1 \sim 015} c \right\rvert\,
\end{gathered}
$$

How would you find the volume of this
solid?
Write down the formula you'd need to find the volume of this solid.
Divide the solid into sections
Hat I ca. fid the volume of
H,. add hos. suction' vol...
to neh.
$V=\underbrace{B L}_{C y}+\underbrace{\frac{4}{5} \pi r^{3}}_{\text {splore }}$
$r=C$ in
un $\underbrace{2} \quad L=10 i-$ $\mathrm{c} \quad \mathrm{B}=\pi r^{2}$

Practice sec 11.8 pg . 652:
1-3A, 5-19EO

