Chapter 11 Test Review

What is the radius of a circle whose circumference is 75 miles (round your answer to the nearest tenth of a mile). $\quad C=2 \pi r$

$$
\frac{75-i}{2 \pi}=\frac{2 \pi r}{2 \pi}
$$

$$
11.937 \mathrm{mi}=r
$$

$$
75 \div(2 \pi)
$$

What is the circumference of circle Z ? (round your answer to the nearest hundredth of an inch)

$$
\underline{\text { Part }}=\underline{\text { Part }}
$$

the nearest hundredth of an inch)

$$
\frac{P_{\text {art }}}{w h_{0} l_{a}}=\frac{P_{\text {sr t }}}{w h l_{e}}
$$

works

Find the arc length of arc $A B$. (round your answer to the nearest tenth of a cm)

$$
\ell \widehat{A B}=x \quad \frac{\rho_{\text {art }}}{\text { whole. }}=\frac{\rho_{\text {ard }}}{V h_{0} l_{1}}
$$

$$
\begin{aligned}
C= & 2 \pi r \\
& 2 \pi(8 \mathrm{cn})
\end{aligned}
$$

$$
\frac{6 x}{d}=\frac{50.265 \mathrm{~cm}}{c}
$$

$$
50.265 \mathrm{c}
$$

$$
\begin{aligned}
x & =8.378 \mathrm{~cm} \\
l \overparen{A B} & =8.4 \mathrm{~cm}
\end{aligned}
$$

Convert 45° to radians.

$45^{\circ} \cdot 1$
$45^{\circ} \cdot \frac{\pi}{\cdots}$

$$
\frac{\pi}{180^{\circ}}=1=\frac{180^{\circ}}{\pi}
$$

$\frac{\pi}{4}$

Convert $\frac{3 \pi}{2}$ radians to degrees.

$\frac{3 \pi}{2} \cdot \frac{180^{\circ}}{\pi}$
270°

$\frac{\pi}{180^{\circ}}-\frac{180^{\circ}}{\pi}$

Find the diameter of a circle with an area of 113.1 square centimeters. (round your answer to the nearest tenth of a unit)

$$
\frac{113.1 \mathrm{ca}^{2}}{\pi}=\frac{\pi r^{2}}{\pi}
$$

$$
A=\pi r^{2}
$$

$$
\begin{aligned}
& \frac{113.1 \mathrm{~cm}^{2}}{\frac{11}{T r}}=\frac{\frac{\pi}{r}}{\pi} \\
& \sqrt{3 C c^{2}}=\sqrt{r} \\
& \text { Dicm.tor }=12 \mathrm{~cm}
\end{aligned}
$$

Find the area of the red sector. (round your answer to the nearest tenth of a unit)

$$
A=c 15.75 \mathrm{ft}^{2}
$$

You are planting a circular garden full of different color pansies. You plan to plant six different colors of flowers covering equal areas. The garden has a radius of 25 feet. How many square feet of space will each color cover? (leave your answer in terms of π)

$$
A=\pi r^{2}
$$

$$
\pi(25 f t)^{2}
$$

Find the area of the regular nonagon.

$$
10{ }_{6}
$$

$$
\begin{array}{rl}
9 & A \\
= & \frac{1}{2} \mathrm{~Pa} \\
& \frac{1}{2}(61.56)(9.4) \\
A & =289.332
\end{array}
$$

$$
\begin{aligned}
& a^{2}+b^{2}=c^{2} \\
& a^{2}+3.42^{2}=10^{2} \\
& a^{2}+11.6944=100
\end{aligned}
$$

$$
\sqrt{a^{2}}=\sqrt{88.3036}
$$

$$
P=q(6.84)
$$

$$
a=9.4 \quad p=61.56
$$

Find the volume of the solid.

$$
V=B L
$$

$$
\frac{\left(201.1 \mathrm{ft}^{2}\right)(14 \mathrm{ft})}{V=2815.4 \mathrm{ft}^{3}}
$$

$$
\begin{aligned}
& \pi(25 t t) \\
& A=\pi 6251 t^{2} \quad \frac{625}{6} \\
& A=c 25 \pi \mathrm{ft}^{2} \\
& 104.167 \mathrm{ft}^{2} \\
& 104.2 \pi \mathrm{ft}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \pi(8 f t)^{2} \\
& \pi=201.1
\end{aligned}
$$

$$
3
$$

Find the volume of the pyramid.

$$
V=\frac{1}{3} B L
$$

$$
h=\frac{8}{3}
$$

$$
\frac{1}{3}\left(S n^{2}\right)\left(\frac{8}{3} n\right)
$$

$$
\left(5 m^{2}\right) \frac{8}{3}
$$

$$
\begin{aligned}
& B= \frac{1}{2} b h \\
& \frac{1}{2}(C n)(3 n) \\
&(3 n)(3 n) \\
& B= 9 n^{2}
\end{aligned}
$$

$$
V=8 \mathrm{~m}^{3}
$$

Given the volume, find the missing measure.

$$
V=B L
$$

(h)

$$
V=56 \pi \mathrm{ft}^{3}
$$

$$
B=\pi r^{2}
$$

$$
\pi(5+0)^{2}
$$

$$
25 \pi f t^{2}
$$

Find the volume and surface area of the following shape.

$$
V=\frac{1}{3} B h \quad S=\pi r^{2}+\pi-l
$$

$$
\begin{gathered}
D=\pi r^{2} \\
\pi(5-)^{2} \\
\pi(25-2) \\
78.5 n^{2}
\end{gathered}
$$

$$
a^{2}+b^{2}=c^{2}
$$

$$
\begin{array}{r}
\frac{1}{3}\left(78.5 m^{2}\right)(6.2-) \quad \begin{array}{r}
78.5 m^{2}+\pi(5-)(8-) \\
V=162.2 m^{3} \quad \pi 40 m^{2}
\end{array} \quad 78.5 m^{2}+125.7 \sim^{2} \\
\left.S=204.2 m^{2}\right)
\end{array}
$$

$$
L^{2}+5^{2}=8^{2}
$$

$$
h^{2}+25=64
$$

Find the volume and surface area of the shape. Leave in terms of π

$$
\begin{array}{lr}
V=\frac{4}{3} \pi r^{3} \\
\frac{4}{3} \pi(1.5 \mathrm{ft})^{3} \\
\frac{4}{3} \pi\left(3.375 \mathrm{ft}^{3}\right) \\
\begin{array}{l}
4.5 \pi \mathrm{ft}^{3} \\
14.14 \mathrm{ft}^{3}
\end{array} & \begin{array}{l}
4 \pi r^{2} \\
4 \pi(1.5 \\
28.27 \mathrm{f}
\end{array} \\
4 \pi \mathrm{f}
\end{array} \quad \begin{aligned}
& 9 \pi 2
\end{aligned}
$$

1 sheet of notes allowed. Practice sec 11 Review pg. 656: 1-7EO, 11-37EO

