What You Will Learn

- Use the sine and cosine ratios.
- Find the sine and cosine of angle measures in special right triangles.
- Solve real-life problems involving sine and cosine ratios.
- Proper labeling of a Triangle

Using the Sine and Cosine Ratios

The sine and cosine ratios are trigonometric ratios for acute angles that involve the lengths of a leg and the hypotenuse of a right triangle.

Labeling a Triangle:

Sine and Cosine Ratios

Let $\triangle A B C$ be a right triangle with acute $\angle A$.

Sine and Cosine Ratios

Let $\triangle A B C$ be a right triangle with acute $\angle A$. The sine of $\angle A$ and cosine of $\angle A$ (written as $\sin A$ and $\cos A$) are defined as follows.
$\sin A=\frac{\text { length of leg opposite } \angle A}{\text { length of hypotenuse }}=\frac{B C}{A B}=\frac{a}{c}$
$\cos A=\frac{\text { length of leg adjacent to } \angle A}{\text { length of hypotenuse }}=\frac{A C}{A B}=\frac{b}{C}$

SOH-CAH-TOA
$t^{t} n$

Find $\sin A, \sin B, \cos A$, and $\cos B$. Write each answer as a fraction and as a decimal rounded to four places.

SOH-CAH-TOA
$\sin A=\frac{\text { opp }}{\text { hyp }}=\frac{15}{39}=.384 \mathrm{C}$
$\cos A=\frac{\operatorname{adj}}{\text { hyp }}=\frac{3 c}{39}=.9231$

$$
\sin B=\frac{\text { opp }}{h_{y p}}=\frac{3 C}{39}=.9231
$$

.38461
$\cos B=\frac{9 d_{j}}{\text { g gp }^{\circ}}=\frac{15}{39}=.3846$

Sine and Cosine of Complementary Angles

The sine of an acute angle is equal to the cosine of its complement. The cosine of an acute angle is equal to the sine of its complement.

Let A and B be complementary angles, Then the following statements are true.

$$
\begin{aligned}
& \sin A=\cos \left(90^{\circ}-A\right)=\cos B \quad \sin B=\cos \left(90^{\circ}-B\right)=\cos A \\
& \cos A=\sin \left(90^{\circ}-A\right)=\sin B \quad \cos B=\sin \left(90^{\circ}-B\right)=\sin A \\
& \text { sis of } L=\cos \text { ot it's complacent } \\
& \cos \text { of } L=\sin \text { st if's complement }
\end{aligned}
$$

Write $\cos 69^{\circ}$ in terms of sine.
$\cos 69^{\circ}=\sin 21^{\circ}$
$3584 \quad .3584$

Write $\sin 56^{\circ}$ in terms of cosine.
$\sin 56=\cos 34$
$.8290 \quad .8290$

Find the values of x and y using sine and cosine. Round your answers to the nearest tenth.

SOH-KAH-TOA

$$
\sin 35^{\circ}=\frac{x}{53}
$$

$$
53(.5736)=\left(\frac{x}{53}\right) 53
$$

$$
\begin{aligned}
& 53(.5736)=\left(\frac{x}{53}\right)=5 \\
& 30.4=x \\
& \cos 35^{\circ}=\frac{y}{53} \\
& 53(.8192)=\left(\frac{y}{53}\right) 53 \\
& 43.4=y
\end{aligned}
$$

Find the values of x and y using sine and cosine.
Round your answers to the nearest tenth. SOH-CAH-TOA

$$
\sin 2 c=\frac{x}{14}
$$

$$
.4384=\frac{x}{14}
$$

$$
6 \cdot 1=x
$$

$$
\begin{aligned}
& \cos 2 C=\frac{y}{14} \\
& .8588=\frac{y}{14} \\
& 12.6=y
\end{aligned}
$$

Find the sine and cosine of a 45° angle.

$$
7071=\frac{\sqrt{2}}{2}
$$

Find the sine and cosine of a 30° angle.
$\sin 30=.5$
$\cos 30=.8460$

Find the sine and cosine of a 60° angle.

$$
\begin{aligned}
& \sin 60=.866 \\
& \cos 60=.5
\end{aligned}
$$

$$
\begin{aligned}
& \text { SOH-CAH-TOA } \\
& \text { Practice sec } 9.5 \mathrm{pg} \\
& \text { 498: } 1 \text {-7EO, } 9-24 \mathrm{~A}
\end{aligned}
$$

Unit 9 Page 6

