$$
a^{2}+b^{2}=c^{2}
$$

What You Will Learn

- Use the Pythagorean Theorem.
- Use the Converse of the Pythagorean Theorem.
- Classify triangles.

Theorem 9.1 Pythagorean Theorem

In a right triangle, the square of the length of the hypotenuse is equal to the sum of the squares of the lengths of the legs.

Proof Explorations 1 and 2, p. 463; Ex. 39, p. 484

A Pythagorean triple is a set of three positive integers a, b, and c that satisfy the equation $c^{2}=a^{2}+b^{2}$.

Common Pythagorean Triples and Some of Their Multiples

3,4,5	5, 12, 13	8, 15, 17	7, 24, 25
6,8,10	10, 24, 26	16, 30, 34	14, 48, 50
n 10	15 of on	ค1 12 er	$\bigcirc 1$ 70 7 ¢

> The most common Pythagorean triples are in bold. The other triples are the result of multiplying each integer in a boldfaced triple by the same factor.

Find the value of x. Then tell whether the side lengths form a Pythagorean triple.

Not PIT.

$$
a^{2}+b^{2}=c^{2}
$$

$$
4^{2}+5^{2}=c^{2}
$$

$$
\sqrt{4^{2}+5^{2}=\sqrt{c^{2}}}
$$

$$
16+25=c^{2}
$$

$$
\sqrt{4^{2}+5^{2}}=c
$$

$$
\sqrt{41}=\sqrt{2}^{x}
$$

$$
\sqrt{16+25}
$$

$$
\sqrt{41}=C
$$

$$
\sqrt{41}=c
$$

C. $7 \approx c$

Find the value of x. Then tell whether the side lengths form a Pythagorean triple.

$$
\frac{25 c}{15}
$$

$$
\begin{aligned}
& a^{2}+b^{2}=c^{2} \\
& 15^{2}+x^{2}=25^{2} \quad \sqrt{15^{2}+x^{2}}=\sqrt{25^{2}} \\
& 2 x 5+x^{2}=625 \\
& -225=-275 \\
& \sqrt{x^{2}}=\sqrt{400} \\
& x=\sqrt{400} \\
& x=20
\end{aligned}
$$

PT.

$$
\begin{aligned}
15^{2}+20^{2} & =25^{2} \\
225+400 & =625 \\
625 & =125
\end{aligned}
$$

The flagpole shown is supported by two wires. Use the Pythagorean Theorem to approximate the length of each wire.

$$
a^{2}+b^{2}=c^{2}
$$

$$
15.1^{2}+8.5^{2}=x^{2}
$$

17. 328.595
17.328
17.33
17.3

Theorem 9.2 Converse of the Pythagorean Theorem

If the square of the length of the longest side of a triangle is equal to the sum of the squares of the lengths of the other two sides, then the triangle is a right triangle.
If $c^{2}=a^{2}+b^{2}$, then $\triangle A B C$ is a right triangle.

Theorem 9.3 Pythagorean Inequalities Theorem

For any $\triangle A B C$, where c is the length of the longest side, the following statements are true.

If $c^{2}<a^{2}+b^{2}$, then $\triangle A B C$ is acute. If $c^{2}>a^{2}+b^{2}$, then $\triangle A B C$ is obtuse.

Verify that segments with lengths of 14 meters, 15 meters, and 11 meters form a triangle. Is the triangle acute, right, or obtuse?

$$
15+11>14
$$

$7 C>14$

$$
\begin{array}{l|l}
14+15>11 & a^{2}+b^{2}=c^{2} \\
29>11 & 11^{2}+14^{2}=15^{2} \\
121+196=225 \\
\operatorname{NotRH} \mid 317 \neq 225 \\
317>225 \\
a^{2}+b^{2}>c^{2} \\
\therefore \text { Acyl }
\end{array}
$$

Practice sec 9.1 pg. 468: 1-3A, 5-9EO, 15-27EOO

