What You Will Learn

- Use properties of special parallelograms.
- Use properties of diagonals of special parallelograms.
- Use coordinate geometry to identify special types of parallelograms.

Rhombuses, Rectangles, and Squares

A rhombus is a parallelogram with four congruent sides.

A rectangle is a parallelogram with four right angles.

In an equilateral polygon, In an equiangular all sides are congruent. polygon, all angles in the
interior of the polygon are congruent.

A square is a parallelogram with four congruent sides and four right angles.

A regular polygon is a convex polygon that is both equilateral and equiangular.

In an equilateral polygon, In an equiangular all sides are congruent.

polygon, all angles in the interior of the polygon are congruent.

A regular polygon is

 a convex polygon that is both equilateral and equiangular.

For any rhombus QRST, decide whether the statement is always or sometimes true. Draw a diagram and explain your reasoning.
a. $\angle Q \cong \angle S$

Alaris True because
QRST is a Rhombus and
All Rhoubis's sa Parellilogens
b. $\angle Q \cong \angle R$

Sanative True, who. the
Robes is a syce...

Classify the special quadrilateral. Explain

 your reasoning.

Theorem 7.11 Rhombus Diagonals Theorem

A parallelogram is a rhombus if and only if its diagonals are perpendicular.
$\square A B C D$ is a rhombus if and only if $\overline{A C} \perp \overline{B D}$.
Proof p. 390; Ex. 72, p. 395

Theorem 7.12 Rhombus Opposite Angles Theorem

A parallelogram is a rhombus if and only if each diagonal bisects a pair of opposite angles.
$\square A B C D$ is a rhombus if and only if $\overline{A C}$ bisects $\angle B C D$ and $\angle B A D$, and $\overline{B D}$ bisects $\angle A B C$ and $\angle A D C$.

Find the measures of the numbered angles in rhombus $A B C D$.

Theorem 7.13 Rectangle Diagonals Theorem

A parallelogram is a rectangle if and only if its diagonals are congruent.
$\square A B C D$ is a rectangle if and only if $\overline{A C} \cong \overline{B D}$.
Prof Exc 87 and 88 n 396

In rectangle $A B C D, A C=7 x-15$ and $B D=2 x+25$. Find the lengths of the $A O=20^{\frac{1}{2}}$ diagonals of $\triangle B C D$

$$
\begin{aligned}
& 7 x-15=2 x+25 \\
& +15 \\
& 7 x=2 x+40 \\
& -2 x=-2 x \\
& 5 x=40 \\
& x=8
\end{aligned}
$$

$$
\begin{gathered}
2 x+25 ; x=8 \\
2 \cdot 8+25 \\
16+25 \\
41
\end{gathered}
$$

Decide whether $\square A B C D$ with vertices

$$
A(-2,3), B(2,2), C(1,-2) \text {, and } D(-3,-1)
$$

is a rectangle, arhombus, ore square.

$$
\begin{gathered}
m \overline{A B}=\frac{-1}{4} \\
m \overline{C D}=\frac{-1}{4} \\
\overline{\triangle D}=4
\end{gathered}
$$

$$
A(-2,3)
$$

Practice sec 7.4 pg .

$$
\begin{aligned}
& 393: 1-3 A, \\
& 7-21 E O O, 23-35 E O, \\
& 43-57 E O O
\end{aligned}
$$

