What You Will Learn

- Identify and verify parallelograms.
- Show that a quadrilateral is a parallelogram in the coordinate plane.
- Use parallelograms in the coordinate plane.

Find the coordinates of the intersection

 of the diagonals of $\square A B C D$ with vertices $A(1,0), B(6,0), C(5,3)$, and $D(0,3) .\left(3, \frac{3}{2}\right)$

Find the coordinates of the intersection of the diagonals of $\square S T U V$ with vertices $S(-2,3), T(1,5), U(6,3)$, and $V(3,1)$.

$$
\left(-\frac{2+6}{2}, \frac{3+3}{2}\right)=\left(\frac{4}{2}, \frac{c}{2}\right)=(2,3)
$$

$\left(\frac{1+3}{2}, \frac{5+1}{2}\right)=$
$\left(\frac{4}{2}, \frac{2}{2}\right)=(2,3)$

Three vertices of $\square D E F G$ are $D(-1,4)$, $E(2,3)$, and $F(4,-2)$. Find the coordinates of vertex G. $(1,-1)$

Three vertices of $\square A B C D$ are $A(2,4), B(5,2)$, and $C(3,-1)$. Find the coordinates of vertex D.

Theorem 7.7 Parallelogram Opposite Sides Converse
If both pairs of opposite sides of a quadrilateral are congruent, then the quadrilateral is a parallelogram.
If $\overline{A B} \cong \overline{C D}$ and $\overline{B C} \cong \overline{D A}$, then $A B C D$ is a parallelogram.

Theorem 7.8 Parallelogram Opposite Angles Converse
If both pairs of opposite angles of a quadrilateral are congruent, then the quadrilateral is a parallelogram.
If $\angle A \cong \angle C$ and $\angle B \cong \angle D$, then $A B C D$ is a parallelogram.
Proof Ex. 39, p. 383

In quadrilateral $A B C D, A B=B C$ and $C D=A D$. Is $A B C D$ a parallelogram? Explain your reasoning. You cannot

$$
\begin{aligned}
& \text { No Bucuse } \\
& \text { opposite sides } \\
& \text { are not } \cong
\end{aligned}
$$

Finding Side Lengths of a Parallelogram

For what values of x and y is quadrilateral STUV a parallelogram?

$2 x+3=y ; x=9$
$2 \cdot 9+3=y$
$18+3=y$
$21=y$
$2 y-x=x+6$
$2 y=2 x+6$
$\frac{18}{2}=\frac{2 x}{2}$

$$
9=\lambda
$$

Theorem 7.9 Opposite Sides Parallel and Congruent Theorem

If one pair of opposite sides of a quadrilateral are congruent and parallel, then the quadrilateral is a parallelogram. If $\overline{B C} \| \overline{A D}$ and $\overline{B C} \cong \overline{A D}$, then $A B C D$ is a parallelogram.

Proof Ex. 40, p. 383

Theorem 7.10 Parallelogram Diagonals Converse

If the diagonals of a quadrilateral bisect each other, then the quadrilateral is a parallelogram.

If $\overline{B D}$ and $\overline{A C}$ bisect each other, then $A B C D$ is a parallelogram.

For what value of x is quadrilateral CDEF a parallelogram?

$$
\begin{aligned}
& 4 x-11=2 x+17 \\
& 2 x-11=17 \\
& 2 x=28 \\
& x=14
\end{aligned}
$$

Ways to Prove a Quadrilateral Is a Parallelogram

1. Show that both pairs of opposite sides are parallel. (Definition)
2. Show that both pairs of opposite sides are congruent.
(Parallelogram Opposite Sides Converse)
3. Show that both pairs of opposite angles are congruent.
(Parallelogram Opposite Angles Converse)
4. Show that one pair of opposite sides are congruent and parallel.
(Opposite Sides Parallel and Congruent Theorem)
5. Show that the diagonals bisect each other.
(Parallelogram Diagonals Converse)

Show that quadrilateral $A B C D$ is a parallelogram.

$$
\begin{aligned}
& m \overline{A B}=\frac{2}{2}=1 \\
& m \overline{C D}=\frac{2}{2}=1
\end{aligned}
$$

$$
m \overline{B C}=\frac{-2}{4}=-\frac{1}{2}
$$

$$
\operatorname{mA}=\frac{-2}{4}=\frac{-1}{2}
$$

yes, parellologees

Show that quadrilateral $A B C D$ is a parallelogram.

$$
\left(\frac{2+0}{2}, \frac{5+0}{2}\right)=\left(1, \frac{5}{2}\right)
$$

$-\overline{D C}=\frac{2}{5}$
$-\overline{A D}=-1$
m $\overline{B C}=-1$

Practice sec 7.2 pg .
372: 25-27A, 29:
$\sec 7.3$ pg. 381: 1,
3-9A, 11-19EO

