What You Will Learn

- Use the interior angle measures of polygons.
- Use the exterior angle measures of polygons.
$>$ Use properties to find side lengths and angles of parallelograms.

Using Interior Angle Measures of Polygons

In a polygon, two vertices that are endpoints of the same side are called consecutive vertices. A diagonal of a polygon is a segment that joins two nonconsecutive vertices.
As you can see, the diagonals from one vertex divide a polygon into triangles. Dividing a polygon with n sides into $(n-2)$ triangles shows that the sum of the measures of the interior angles of a polygon is a multiple of 180°.

7 sides
5 D's

Theorem 7.1 Polygon Interior Angles Theorem

The sum of the measures of the interior angles of a convex n-gon is $(n-2) \cdot 180^{\circ}$

$$
\begin{aligned}
& m \angle 1+m \angle 2+\cdots+m \angle n=(n-2) \cdot 180^{\circ}
\end{aligned}
$$

Proof Ex. 42 (for pentagons), p. 365

$$
\begin{aligned}
& (105-2) \cdot 180 \\
& \left(03 \cdot 180=18540^{\circ}\right.
\end{aligned}
$$

Corollary 7.1 Corollary to the Polygon Interior Angles Theorem

The sum of the measures of the interior angles of a quadrilateral is 360°.

A and B are consecutive vertices.
Vertex B has two diagonals, $\overline{B D}$ and $\overline{B E}$.

$(3-2) \cdot 180$
$1 \cdot 180$
180

Find the sum of the measures of the interior angles of the figure.

The sum of the measures of the interior angles of a convex polygon is 1800°. Classify the polygon by the number of sides.

$$
\begin{aligned}
& (n-2) / 80=\text { sc m of int } \angle \text { 's } \\
& \frac{(n-2) 180}{180} \frac{1800}{180} \\
& n-2=10 \\
& +2+2 \\
& n=12
\end{aligned}
$$

$(4-2)^{180}$
2.180
360°

$$
\begin{gathered}
108+121+55+x=360 \\
108+180+x=360 \\
186+x=360 \\
-186-18 \\
x=72^{\circ}
\end{gathered}
$$

In an equilateral polygon, In an equiangular all sides are congruent. polygon, all angles in the interior of the polygon are congruent.

A regular polygon is a convex polygon that is both equilateral and equiangular.

A polygon is shown.

$(n-2) 180$
$(7-2) 180$
900
a. Is the polygon regular? Explain your reasoning.
No, not all Ls are congruent.
b. Find the measures of $\angle B, \angle D, \angle E$, and $\angle G$.

$$
m \angle S=125^{\circ}
$$

$100+140+160+4 x=900$
$m \angle D=125^{\circ}$
$400+4 x=900$
$-\angle E=125^{\circ}$
$\therefore \angle G=125^{\circ}$

Theorem 7.2 Polygon Exterior Angles Theorem
The sum of the measures of the exterior angles of a convex polygon, one angle at each vertex, is 360°.

$$
m \angle 1+m \angle 2+\cdots+m \angle n=360^{\circ}
$$

Proof Ex. 51, p. 366

$n=5$

Find the value of x in the diagram.

$2 x+x+67+89=340$

$3 x+15 c=3<0$

$$
\begin{gathered}
\frac{3 x}{3}=\frac{204}{3} \\
x=68
\end{gathered}
$$

A parallelogram is a quadrilateral with both pairs of opposite sides parallel. In $\square P Q R S, \overline{P Q} \| \overline{R S}$ and $\overline{Q R} \| \overline{P S}$ by definition. The theorems below describe other properties of parallelograms.

Theorem 7.3 Parallelogram Opposite Sides Theorem

If a quadrilateral is a parallelogram, then its opposite sides are congruent.
If $P Q R S$ is a parallelogram, then $\overline{P Q} \cong \overline{R S}$ and $\overline{Q R} \cong \overline{S P}$.

Proof p. 368
Theorem 7.4 Parallelogram Opposite Angles Theorem
If a quadrilateral is a parallelogram, then its opposite angles are congruent.
If $P Q R S$ is a parallelogram, then $\angle P \cong \angle R$ and $\angle Q \cong \angle S$.

Find the values of x and y.

$$
2 x=54
$$

$$
x=27
$$

$$
\begin{aligned}
& 20=3 y-1 \\
& 21=3 y \\
& 7=y
\end{aligned}
$$

Theorem 7.5 Parallelogram Consecutive Angles Theorem-
If a quadrilateral is a parallelogram, then its consecutive angles are supplementary.

If $P Q R S$ is a parallelogram, then $x^{\circ}+y^{\circ}=180^{\circ}$.
Proof Ex. 38, p. 373

Theorem 7.6 Parallelogram Diagonals Theorem
If a quadrilateral is a parallelogram, then its diagonals bisect each other.
If $P Q R S$ is a parallelogram, then $\overline{Q M} \cong \overline{S M}$ and $\overline{P M} \cong \overline{R M}$.

$<3,<6$
Consoculiun Int. Bs

As shown, part of the extending arm of a desk lamp is a parallelogram. The angles of the parallelogram change as the lamp is raised and lowered. Find $m \angle B C D$ when $m \angle A D C=110^{\circ}$.

Practice sec 7.1 pg . 364: 1-25EOO, 27, 29, 37-41EO:
Sec 7.2 pg. 372:
3-19EO

