What You Will Learn

- Use midsegments of triangles in the coordinate plane.
- Use the Triangle Midsegment Theorem to find distances.

Using the Midsegment of a Triangle

A midsegment of a triangle is a segment that connects the midpoints of two sides of the triangle. Every triangle has three midsegments, which form the midsegment triangle.
The midsegments of $\triangle A B C$ at the right are $\overline{M P}, \overline{M N}$, and $\overline{N P}$. The midsegment triangle is $\triangle M N P$.

In $\triangle R S T$, show that midsegment $\overline{M N}$ is parallel to $\overline{R S}$ and that $M N=\frac{1}{2} R S$.

$$
\begin{aligned}
& D=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& m N=\sqrt{(1-3)^{2}+(0-2)^{2}} \\
& \sqrt{(-2)^{2}+(-2)^{2}} \imath_{2}^{8}
\end{aligned}
$$

(2.1)

$$
R S=4^{2}+4^{2}=c^{2}
$$

$$
\begin{equation*}
16+16=c^{2} \tag{32}
\end{equation*}
$$

$$
\sqrt{32}=\sqrt{c^{2}}
$$

$(-2,1)$

$$
\text { slope }=m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

$$
m \overline{m N}=\frac{0-2}{1-3}=\frac{-2}{-2}=1
$$

$$
m \overline{R S}=\frac{4}{4}=1
$$

$$
\overline{m N} \| \overline{R S}
$$

$$
\begin{aligned}
& V(-2)^{-}+(-2)^{-} \\
& \sqrt{4+4} \\
& \sqrt{8} \\
& \text { 人 } \quad \sqrt{32}=\sqrt{c^{2}} \\
& \sqrt{32}=c \\
& 2 \cdot 2 \sqrt{2} \\
& R S=4 \sqrt{2} * 5.65 \\
& 2 \sqrt{2}=\frac{1}{2} 4 \sqrt{2} \\
& 2 \sqrt{2}=2 \sqrt{2}
\end{aligned}
$$

Theorem
Theorem 6.8 Triangle Midsegment Theorem
The segment connecting the midpoints of two sides of a triangle is parallel to the third side and is half as long as that side.
$\overline{D E}$ is a midsegment of $\triangle A B C, \overline{D E} \| \overline{A C}$, and $D E=\frac{1}{2} A C$.

- midsegnant is $I I$ to Ha sida it ism't coanactad to
- midsejuant is $\frac{1}{2}$ as long as H. side itisa't connothto
$\overline{D E}$ is a midsegment of $\triangle A B C$. Find $A C .=$

In the figure, $C F=F B$ and $C D=D A$. Which segments must be parallel?

$$
\overline{D F} \| \overline{A B}
$$

midpoint
$\overline{D F}$ is a midsejnant

Practice sec 6.4 pg . 333: 1-3A, 6-20A

