What You Will Learn

Find surface areas of right cones.

- Find volumes of cones.
- Use volumes of cones.

Surface Area of a Right Cone

The surface area S of a right cone is

$$
S=\pi r^{2}+\pi r \ell
$$

where r is the radius of the base and ℓ is the slant height.

What is a Right Cone?

Finding Surface Areas of Right Cones

Recall that a circular cone, or cone, has a circular base and a vertex that is not in the same plane as the base. The altitude, or height, is the perpendicular distance between the vertex and the base. In a right cone, the height meets the base at its center and the slant height is the distance between the vertex and a point on the base edge

The lateral surface of a cone consists of all segments that connect the vertex with points on the base edge. When you cut along the slant height and lay the right cone flat, you get the net shown at the left. In the net, the circular base has an area of πr^{2} and the lateral surface is a sector of a circle. You can find the area of this sector by using a proportion, as shown below.

$\frac{\text { Area of sector }}{\text { Area of circle }}=\frac{\text { Arc length }}{\text { Circumference of circle }}$	Set up proportion.
$\frac{\text { Area of sector }}{\pi \ell^{2}}=\frac{2 \pi r}{2 \pi \ell}$	Substitute.
Area of sector $=\pi \ell^{2} \cdot \frac{2 \pi r}{2 \pi \ell}$	Multiply each side by $\pi \ell^{2}$.
Area of sector $=\pi r \ell$	Simplify.

The surface area of a right cone is the sum of the base area and the lateral area, $\pi r \ell$.

Find the surface area of the right cone.
$S=\pi r^{2}+\pi r l$

Find the surface area of the right cone.

$$
S=\pi r^{2}+\pi r l
$$

$$
\pi(7.8 n)^{2}+\pi(7.8 n)(10 n)
$$

$$
\begin{aligned}
& S=138.8 n^{2} \pi \\
& S=436.1 n^{2}
\end{aligned}
$$

Volume of a Cone

The volume V of a cone is
$V=\frac{1}{3} B h=\frac{1}{3} \pi r^{2} h$
where B is the area of the base, h is the
height, and r is the radius of the base.

- Sane as Volue ot Pyranid
- usas heijlt. Not langth at cone.

Find the volume of the cone. $\quad V=\frac{1}{3} B h$

$$
\begin{aligned}
& B=\pi r^{2} \\
& \pi(10 \mathrm{~m})^{2} \\
& \pi 100 \mathrm{~m}^{2} \\
& B= \\
& 314.2 \mathrm{~m}^{2}
\end{aligned}
$$

Find the volume of the composite solid.

Draak Ho slope up

Practice sec 11.7 pg . 645:
1-3A, 5-11EO, 15, 16

