What You Will Learn

$$
V=B L
$$

Find volumes of pyramids.

$$
V=\lim _{\Delta h} h
$$

- Use volumes of pyramids.

$$
A_{T}=\frac{1}{2} b h
$$

Volume of a Pyramid

The volume V of a pyramid is

$$
V=\frac{1}{3} B h
$$

where B is the area of the base and h is the height.

Find the volume of the pyramid.
$B=(4 n)(4 n)$
$B=16 \mathrm{~m}^{2}$

Find the volume of the pyramid.
1.

$$
V=\frac{1}{3} B h
$$

2.

Unit 11 Page 1

$\frac{1}{3}\left(374.4 \mathrm{~cm}^{2}\right)(20 \mathrm{~cm})$
$\frac{1}{3}\left(7488 \mathrm{~cm}^{3}\right)$
$V=2496 \mathrm{~cm}^{3}$

Find the height of the triangular pyramid.

$$
\begin{aligned}
B= & \frac{1}{2} l v \\
& \frac{1}{2}(24 n)(8 n) \\
& (24 n)(4 n) \\
B= & 96 n^{2}
\end{aligned}
$$

$$
\begin{aligned}
& V=\frac{1}{3} B h \\
& 384 m^{3}=\frac{1}{3}\left(56 n^{2}\right) h \\
& \frac{384 m^{3}}{32 x^{x}}=\frac{\left(32 m^{2}\right) h}{32 x^{2}} \\
& 12 m=h
\end{aligned}
$$

Find the volume of the composite solid.
T. find Ha total Veluas, break

He langer slope into slippers you
can find H. volune of H... sd
Hose smaller steppes values up.

$$
\begin{array}{ccc}
V_{\Delta}=\Delta h & \Delta=l_{w} & V_{\Delta}=\frac{1}{3} \Delta h \\
\left(144 m^{2}\right)(9 m) & (12-)(12-) & \frac{1}{3}\left(144 m^{2}\right) 10 m \\
V_{\Delta}=1296 n^{3} & B=144 m^{2} & \frac{1}{3}\left(1440 m^{3}\right)
\end{array}
$$

$$
V_{i}=V_{\Delta}+V_{\square}
$$

$$
V_{\Delta}=480 \mathrm{c}^{3}
$$

$$
V_{T}=1776 n^{3}
$$

Practice sec 11.6 pg. 639:
1-3A, 5-13EO, 17, 19, 22, 26-29A

