What You Will Learn

Find volumes of prisms and cylinders.
 Use volumes of prisms and cylinders.

Finding Volumes of Prisms and Cylinders

The volume of a solid is the number of cubic units contained in its interior. Volume is measured in cubic units, such as cubic centimeters (cm^{3}). Cavalieri's Principle, named after Bonaventura Cavalier (1598-1647), states that if two solids have the same height and the same cross-sectional area at every level, then they have the same volume. The prisms below have equal heights h and equal cross-sectional areas B at every level. By Cavalieri's Principle, the prisms have the same volume.
$V=\ell w h$

$B=\ell w$

$$
\begin{aligned}
& \text { Bases ore } \cong i \| \text { th. us. } V=\text { Bht vt... } \\
& \text { BaA... } \quad \text {. L L... }
\end{aligned}
$$

Volume of a Prism
The volume V of a prism is

$$
V=B h
$$

where B is the area of a base and h is the height.

$$
L=\text { distance between } 2 \text { Bess }
$$

Find the volume of each prism.
a.

$$
\begin{aligned}
& x^{2}=x \cdot x \\
& x \cdot x^{2}
\end{aligned}
$$

$$
\begin{aligned}
& x \cdot x^{2} \\
& x \cdot x \cdot x \\
& x^{3}
\end{aligned}
$$

b.

$$
V=B h
$$

$$
\begin{aligned}
& =15 h \\
& \left(12.5 m^{2}\right)(4.2 n)
\end{aligned}
$$

$$
\begin{aligned}
B= & \frac{b_{1}+b_{2}}{2}(L) \\
& \frac{4.4 n+5.6 m}{2}(2.5 m) \\
& \frac{10 m}{2}(2.5 n) \\
B= & 12.5 \mathrm{~m}^{2}
\end{aligned}
$$

Volume of a Cylinder
The volume V of a cylinder is

$$
V=B h=\pi r^{2} h
$$

where B is the area of a base, h is the height, and r is the radius of a base.

Find the volume of each cylinder.

$$
\begin{aligned}
& B=\pi r^{2} \\
& \pi(5 n)^{2} \\
& \pi\left(25 \mathrm{~m}^{2}\right) \\
& B=78.5 \mathrm{~m}^{2}
\end{aligned}
$$

a.

$$
\begin{aligned}
V & =B h \\
& =(78.5 \mathrm{~m})(9.1-) \\
V & =714.7 \mathrm{~m}^{3}
\end{aligned}
$$

b.

$$
\begin{aligned}
B= & \pi r^{2} \\
& \pi(7 \mathrm{ft})^{2} \\
& \pi\left(49 \mathrm{ft}^{2}\right) \\
B= & 153.5 \mathrm{ft}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& V=B L \\
& \left(153.5 \mathrm{ft}^{2}\right)(22 \mathrm{ft}) \\
& V=3386.6 \mathrm{ft}^{3} \quad 3385.8 \mathrm{ft}^{3}
\end{aligned}
$$

Find the volume of the solid.
1.

$V=\Delta h$
$(22.5-2)$

$$
\frac{1}{2}\left(45 m^{2}\right)
$$

$$
B=22.5 \mathrm{~m}^{2}
$$

$$
V=180 n^{3}
$$

2.

$V=\Delta L$ $V=2814.9 \mathrm{ft}^{3}$ $V=2814.9 \mathrm{ft}^{3} \quad \pi\left(64 \mathrm{ft}^{2}\right)$ $V=2815.4 \mathrm{ft}^{3} \quad B=201.1 \mathrm{ft}^{2}$

Practice sec 11.5 pg. 631: 3-12A, 17-21EO
\square

