What You Will Learn

Find angle measures in regular polygons.

- Find areas of regular polygons.

$$
A=\frac{6 h}{2}=\frac{1}{2} b h
$$

Finding Angle Measures in Regular Polygons

The diagram shows a regular polygon inscribed in a circle.
The center of a regular polygon and the radius of a regular polygon are the center and the radius of its circumscribed circle.

The distance from the center to any side of a regular polygon is called the apothem of a regular polygon. The apothem is the height to the base of an isosceles triangle that has two radii as legs. The word "apothem" refers to a segment as well as a length. For a given regular polygon, think of an apothem as a segment and the apothem as a length.

A central angle of a regular polygon is an angle formed by two radii drawn to consecutive vertices of the polygon. To find the measure of each central angle, divide 360° by the number of sides.

In the diagram, polygon $A B C D E F G H J$ is a regular decagon inscribed in $\odot P$. Find each angle measure.

a. $m \angle K P J=36^{\circ}$
b. $m \angle L P K=18^{\circ}$
c. $m \angle L J P=72^{-}$

$$
A=\frac{1}{2} b h \quad S O H-C A H-T O A
$$

In the diagram, $W X Y Z$ is a square inscribed in $\odot P$.
3. Identify the center, a radius, an apothem, and a central angle of the polygon.
4. Find $m \angle X P Y, m \angle X P Q$, and $m \angle P X Q$.

Finding Areas of Regular Polygons

You can find the area of any regular n-go by dividing it into congruent triangles.

$$
A=\text { Area of one triangle } \cdot \text { Number of triangles }
$$

$$
=\left(\frac{1}{2} \cdot s \cdot a\right) \cdot n \quad \text { Base of triangle is } s \text { and height of }
$$

$$
\text { triangle is a. Number of triangles is } n \text {. }
$$

$$
\begin{aligned}
& =\frac{1}{2} \cdot a \cdot(n \cdot s) \\
& =\frac{1}{2} a \cdot P
\end{aligned}
$$

Commutative and Associative
Properties of Multiplication
There are n congruent sides of

$$
\text { length } s \text {, so perimeter } P \text { is } n \cdot s \text {. }
$$

5 in

Area of a Regular Polygon

The area of a regular n-gon with side length s is one-half the product of the apothem a and the perimeter P.

$$
A=\frac{1}{2} a P, \text { or } A=\frac{1}{2} a \cdot n s
$$

A regular hexagon is inscribed in a circle with a diameter of 32 units. Find the area of the hexagon.

$$
\begin{aligned}
A= & \frac{1}{2} a P \\
& \frac{1}{2} 8 \sqrt{3} 96
\end{aligned}
$$

A mirror is in the shape of a regular 9 nonagon with 6 -inch sides. What is the area of the mirror?

SOH-SAHETOA

$$
a=8.2
$$

$\frac{310}{9}$
40
$A=\frac{1}{2} a$

$$
\tan 20=\frac{3}{a}
$$

$=\frac{1}{2} 8.2 .54$
(4.1) $54 \quad A=221.4 i^{2}$

Practice sec 11.3 pg .

614: 7-24A

