Find areas of sectors.
Use areas of sectors.

Area of a Circle

The area of a circle is

$$
A=\pi r^{2}
$$

where r is the radius of the circle.

Find each indicated measure.
a. area of a circle with a radius of 8.5 inches

$$
\begin{gathered}
A=\pi r^{2} \\
\pi(8.5)^{2} \\
\pi(72.25) \\
A=226.98 i^{2}
\end{gathered}
$$

b. diameter of a circle with an area of 153.94 square feet

$$
A=\pi r^{2}
$$

$$
\frac{153.94}{\pi}=\frac{\pi r^{2}}{\pi}
$$

$$
\sqrt{49}=\sqrt{r^{2}}
$$

$$
7=r
$$

Area of a Sector

The ratio of the area of a sector of a circle to the area of the whole circle $\left(\pi r^{2}\right)$ is equal to the ratio of the measure of the intercepted arc to 360°.

$$
\begin{gathered}
\frac{\text { Area of sector } A P B}{\pi r^{2}}=\frac{m \overparen{A B}}{360^{\circ}} \text {, or } \\
\text { Area of sector } A P B=\frac{m \overparen{A B}}{360^{\circ}} \cdot \pi r^{2} \\
\frac{\ell \overparen{A B}}{C}=\frac{\text { h } \overparen{A B}}{3 C 0^{\circ}}=\frac{A A P B}{A_{\text {or }}}
\end{gathered}
$$

Red Ara

$$
\begin{aligned}
& \frac{A P S Q}{A_{O S}}=\frac{\mathrm{mPQ}}{360^{\circ}} \\
& \frac{A}{706.86}=\frac{135^{\circ}}{360^{\circ}} \\
& 360 A=(706.86) / 35 \\
& \frac{360 A}{360}=\frac{95426.1}{360} \\
& A=2\left(5.1 \mathrm{~cm}^{2}\right.
\end{aligned}
$$

Find the areas of the sectors formed by
Angle(FDE)

Red Ares

$$
\begin{aligned}
& \frac{\angle \widehat{F E}}{360}=\frac{A}{\pi r^{2}} \\
& \frac{\frac{+20^{\circ}}{366^{\circ}}=\frac{A}{615.75 \mathrm{fl}^{2}}}{\frac{C 15.75 \mathrm{ft}^{2}}{3}=\frac{3 \mathrm{~A}}{3}}
\end{aligned}
$$

$$
A_{\Delta 0}=\left(15.74 \mathrm{ft}^{2}\right.
$$

$$
\frac{3}{205.25 \mathrm{ft}^{2}=1}
$$

Find the area of $\odot S$.

$$
\begin{aligned}
& \frac{135^{\prime}}{360^{\circ}}=\frac{48 \mathrm{ft}^{2}}{A_{o s}} \\
& 135\left(A_{0 s}\right)=360\left(48 \mathrm{ft}^{2}\right) \\
& \frac{135\left(A_{0 s}\right)}{136}=\frac{17280 \mathrm{ff}^{2}}{135} \\
& A_{0 s}=128 \mathrm{ft}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{m \overparen{T U}}{3 C O}=\frac{3 T}{A 0 v} \\
& \frac{40^{\circ}}{3 C 0^{\circ}}=\frac{35 n^{\circ}}{A} \\
& 3 C O\left(35 \mathrm{~m}^{2}\right)=4 O A
\end{aligned}
$$

$$
\begin{aligned}
& \frac{12 c o \sigma^{2}}{4}=\frac{40 \mathrm{~A}}{40} \\
& 3 / 5^{2}=\text { Aov }
\end{aligned}
$$

Practice sec 11.2 pg .

$$
\begin{aligned}
& \text { 606: } 1-10 A \\
& 15-22 A
\end{aligned}
$$

