What You Will Learn

\rightarrow Use the formula for circumference. $2 \pi r=C$

Use arc lengths to find measures.

Solve real-life problems.
Measure angles in radians.

Using the Formula for Circumference

The circumference of a circle is the distance around the circle. Consider a regular polygon inscribed in a circle. As the number of sides increases, the polygon approximates the circle and the ratio of the perimeter of the polygon to the diameter of the circle approaches $\pi \approx 3.14159 \ldots$...

For all circles, the ratio of the circumference C to the diameter d is the same. This ratio is $\frac{C}{d}=\pi$. Solving for C yields the formula for the circumference of a circle, $C=\pi d$. Because $d=2 r$, you can also write the formula as $C=\pi(2 r)=2 \pi r$.

Circumference of a Circle

The circumference C of a circle is $C=\pi d$ or $C=2 \pi r$, where d is the diameter of the circle and r is the radius of the circle.

$$
C=\pi d=2 \pi r
$$

$m \widehat{B A D}$
round t- nemiost Lundeth

Find each indicated measure.

$$
\begin{aligned}
c & =2 \pi r \\
& =2 \pi 11 \\
& =22 \pi \\
& =65.1150
\end{aligned}
$$

a. circumference of a circle with a radius of 11 inches

$$
C 7.12 \text { in }
$$

b. radius of a circle with a circumference

$$
\text { of } 4 \text { millimeters }
$$

$$
6.28 .636
$$

Using Arc Lengths to Find Measures

An arc length is a portion of the circumference of a circle. You can use the measure of the arc (in degrees) to find its length (in linear units).
$\overparen{A B}$
vs. $m \overparen{A B}$
doges
vs. $l \widehat{A B}$
lab tr

$$
\begin{aligned}
& \text { arc length } \widehat{A B} \\
& \text { units: leith } \\
& \text { ie. imeles fred man } \\
& \text { miles }
\end{aligned}
$$

$$
\begin{aligned}
& C=2 \pi r \\
& 4 \div 2 \pi \text { En } \\
& \left.\frac{4 m \operatorname{man}}{2 \pi}=\frac{2 \pi r}{2 \pi}+\begin{array}{c}
6.28 \\
4 \div(2 \pi) \text { Enter } \\
.64 \mathrm{ma}
\end{array}\right]
\end{aligned}
$$

Arc Length
In a circle, the ratio of the length of a given arc to the circumference is equal to the ratio of the measure of the are to 360°.
$\frac{\text { part }}{w 6 h} \frac{\text { Arc length of } \overparen{A B}}{2 \pi r C}=\frac{m \overparen{A B}}{360^{\circ}}$, or $\frac{\text { part }}{\text { who la }}$
$c=100 \mathrm{in}$
$l \widehat{A B}=25$ i

Arc length of $\overparen{A B}=\frac{m \overparen{A B}}{360^{\circ}} \cdot 2 \pi r$

$$
\frac{90^{\circ}}{310^{\circ}}=\frac{1}{4}=25 \%
$$

Find the indicated measure.
3. arc length of $\overparen{P Q}$

$\frac{l \widehat{P Q}}{28.27 \mathrm{~J})}=\frac{75^{\circ}}{3\left(0^{\circ}\right.}$
$\frac{l \widehat{P Q}\left(3 C 0^{\circ}\right)}{3 C 0^{\circ}}=\frac{(28.77, \partial) 75^{\circ}}{3 C 0^{\circ}}$
$\widehat{P Q} \approx 5.89 \mathrm{gd}$
5. radius of $\odot G$

$$
c=2 \pi r
$$

$$
\frac{25.2 f+}{2 \pi}=\frac{2 \pi 1}{2 \pi}
$$

What is a Radian?

measurn-ant do single radius

$$
\frac{c}{d}=\pi
$$

Converting between Degrees and Radians

Degrees to radians
Multiply degree measure by

$$
\frac{2 \pi \text { radians }}{360^{\circ}} \text { or } \frac{\pi \text { radians }}{180^{\circ}}
$$

Radians to degrees

Multiply radian measure by

$$
\frac{360^{\circ}}{2 \pi \text { radians }} \text {, or } \frac{180^{\circ}}{\pi \text { radians }} .
$$

$\frac{5}{5}=1$
$\frac{1}{1}=1 \quad \frac{x}{x}=1 \quad \frac{p 7}{p}=1$
8. Convert 15° to radians.
$15^{\circ} \cdot 1$
$\frac{15^{\circ}}{1} \cdot \frac{\pi}{180^{\circ}}=\frac{15^{\prime} \pi}{180^{\circ}}$
$\frac{\pi}{12}$
9. Convert $\frac{4 \pi}{3}$ radians to degrees.

$$
\begin{aligned}
& \frac{4 \pi}{3} \cdot 1 \\
& \frac{4 \pi}{3} \cdot \frac{180^{\circ}}{\pi}=\frac{4 \pi 180^{\circ}}{8 \pi} \\
& 240^{\circ}
\end{aligned}
$$

a. Convert 30° to radians. $\frac{180^{\circ}}{\pi}$

$$
\frac{3 \theta^{\circ}}{1} \cdot \frac{\pi}{18 \theta_{6}}
$$

$$
\frac{\pi}{180^{\circ}}
$$

$$
\frac{\pi}{6}
$$

$$
\begin{aligned}
& \frac{3 \pi}{8} \cdot \frac{180^{\circ}}{\pi} \\
& \frac{540^{\circ}}{8}=67.5^{\circ}
\end{aligned}
$$

Practice sec 11.1 pg. 598: 1-3A, 5-7EO, 8-11A, 19-22A

