What You Will Learn

Find angle and arc measures.
Use circumscribed angles.

Theorem 10.14 Tangent and Intersected Chord Theorem

If a tangent and a chord intersect at a point on a circle, then the measure of each angle formed is one-half the measure of its intercepted arc.

Proof Ex. 33, p. 568

$$
m \angle 1=\frac{1}{2} m \overparen{A B} \quad m \angle 2=\frac{1}{2} m \overparen{B C A}
$$

Line m is tangent to the circle. Find the measure of the red angle or arc.
a.

$$
m \angle 1=\frac{240}{2}
$$

$$
m \angle 1=120^{\circ}
$$

b.

$$
\frac{m \overparen{L J K}}{2}=n<L
$$

$$
\begin{aligned}
*\left(\frac{m \angle J K}{2}\right) & =(155)^{2} \\
m \angle J K & =310^{\circ}
\end{aligned}
$$

Intersecting Lines and Circles
If two nonparallel lines intersect a circle, there are three places where the lines can intersect.

on the circle
yestardes

inside the circle

ted

Theorem 10.15 Angles Inside the Circle Theorem

If two chords intersect inside a circle, then the measure of each angle is one-half the sum of the measures of the arcs intercepted by the angle and its vertical angle.

Proof Ex. 35, p. 568

$$
\begin{aligned}
& m \angle 1=\frac{1}{2}(m \overparen{D C}+m \overparen{A B}), \\
& m \angle 2=\frac{1}{2}(m \overparen{A D}+m \overparen{B C})
\end{aligned}
$$

Theorem 10.16 Angles Outside the Circle Theorem

If a tangent and a secant, two tangents, or two secants intersect outside a circle, then the measure of the angle formed is one-half the difference of the measures of the intercepted arcs.

$$
m \angle 1=\frac{1}{2}(m \overparen{B C}-m \overparen{A C}) \quad m \angle 2=\frac{1}{2}(m \overparen{P Q R}-m \overparen{P R}) \quad m \angle 3=\frac{1}{2}(m \overparen{X Y}-m \overparen{W Z})
$$

Find the value of x.
a.

b.

$$
\begin{aligned}
-80-80 & (-1)(-x) \\
x=92 & (-30)(-1) \\
x & =30
\end{aligned}
$$

Circumscribed Angle

A circumscribed angle is an angle whose sides are tangent to a circle.

Theorem $\mathbf{1 0 . 1 7}$ Circumscribed Angle Theorem
The measure of a circumscribed angle is equal to 180° minus the measure of the central angle that intercepts the same arc.

Proof Ex. 38, p. 568

$$
m \angle A D B=180^{\circ}-m \angle A C B
$$

Find the value of x.
a.

b.

$$
\begin{aligned}
42+90+x+90 & =360 \\
222+x & =360 \quad x
\end{aligned}=69
$$

$$
\begin{gathered}
-222 \\
x=138
\end{gathered}
$$

Practice sec 10.5 pg .
566: 3-21EO

