What You Will Learn

- Identify special segments and lines.
- Draw and identify common tangents.
- Use properties of tangents.

A circle is the set of all points in a plane that are equidistant from a given point called the center of the circle. A circle with center P is called "circle P " and can be written as $\odot P$.

circle P, or $\odot P$

OP

Lines and Segments That Intersect Circles

A segment whose endpoints are the center and any point on a circle is a radius.
A chord is a segment whose endpoints are on a circle. A diameter is a chord that contains the center of the circle.

A secant is a line that intersects a circle in two points.
A tangent is a line in the plane of a circle that intersects the circle in exactly one point, the point of tangency. The tangent ray $\overrightarrow{A B}$ and the tangent segment $\overline{A B}$ are also called tangents.

Tell whether the line, ray, or segment is best described as a radius, chord, diameter, secant, or tangent of $\odot 0$.

a. $\overline{P R}$, diameter, chord
b. $\overleftrightarrow{M N}$ tangeit
c. $\overleftrightarrow{P Q}$ secsent
d. $\overline{Q O}$ radius

Coplanar Circles and Common Tangents

In a plane, two circles can intersect in two points, one point, or no points. Coplanar circles that intersect in one point are called tangent circles. Coplanar circles that have a common center are called concentric circles.

A line or segme that is tangent to two coplanar circles is called a common tangent. A common internal tangent intersects the segment that joins the centers of the two circles. A common extemal fangent does not intersect the segment that joins the centers of the two circles.

Tell how many common tangents the circles have. Draw them, and list how many are internal and how many are external.
a.

b.

Theorem 10.1 Tangent Line to Circle Theorem

In a plane, a line is tangent to a circle if and only if the line is perpendicular to a radius of the circle at its endpoint on the circle.

Proof Ex. 47, p. 536

Line m is tangent to $\odot Q$ if and only if $m \perp \overline{Q P}$.

Theorem 10.2 External Tangent Congruence Theorem

Tangent segments from a common external point are congruent.

Proof Ex. 46, p. 536

If $\overline{S R}$ and $\overline{S T}$ are tangent segments, then $\overline{S R} \cong \overline{S T}$.

IS $\overline{S T}$ tangent to $\odot P$?

In the diagram, point P is a point of tangency. Find the radius r of $\odot 0$.

$57 c+24 r+24 r+r^{2}$ $576+48 r+r^{2}$

FOIL

(24+r) $Q(24+r)(24+r)$
$3 c^{2}+r^{2}=(24+r)^{2}$
$1296+r^{2}: 57 c+48 r+r^{2}$
$-576 \quad-576$
$720+x^{x}=48 \mathrm{r}$
$20=48 \mathrm{r}$
$720=485$
$2512 \neq 2001$
\therefore Not trust
$\overline{J H}$ is tangent to $\odot L$ at H, and $\overline{J K}$ is tangent to $\odot L$ at K. Find the value of x.

$$
\begin{gathered}
7 x-23=61 \\
+23+23 \\
7 x=\frac{84}{7} \\
x=12
\end{gathered}
$$

Practice sec 10.1 pg . 534: 5-18A, 19-25EO, 29, 31

