What You Will Learn

- Identify complementary and supplementary angles.
- Identify linear pairs and vertical angles.

Complementary and Supplementary Angles

 $\angle 1$ and $\angle 2$

 $\angle A$ and $\angle B$

complementary angles

Two positive angles whose measures have a sum of 90°. Each angle is the complement of the other.

Comploureday

 $\angle 3$ and $\angle 4$

 $\angle C$ and $\angle D$

supplementary angles

Two positive angles whose measures have a sum of 1809 Each angle is the supplement of the other.

Supplementary Straight line

Adjacent Angles

Complementary angles and supplementary angles can be *adjacent angles* or nonadjacent angles. Adjacent angles are two angles that share a common vertex and side, but have no common interior points.

∠5 and ∠6 are adjacent angles.

∠7 and ∠8 are nonadjacent angles.

a. $\angle 5$ is a complement of $\angle 3$, and $m\angle 3 = 53^{\circ}$. Find $m\angle 5$.

The veins in a leaf form a pair of supplementary angles. Find the measures of the angles when $m \angle 1 = (7x + 13)^{\circ}$ and $m \angle 2 = (25x + 7)^{\circ}$.

b. $\angle 4$ is a supplement of $\angle 2$, and $m\angle 4 = 29^{\circ}$. Find $m\angle 2$.

180= (7x+13)+(75x+7) 180= 32x+20 -20 -20 160=32x 32 32 5=x 48 75×+7;X=5 75:5+7 125+7

7x+13; x=5

7.5+13

35 + 13

Linear Pairs and Vertical Angles

Two adjacent angles are a linear pair when their noncommon sides are opposite rays. The angles in a linear pair are supplementary angles.

Two angles are vertical angles when their sides form two pairs of opposite rays.

∠3 and ∠6 are vertical angles. ∠4 and ∠5 are vertical angles.

Identify all of the linear pairs and all of the vertical angles in the figure.

Two angles form a linear pair. The measure of one angle is eight times the measure of the other angle. Find the measure of each angle.

