What You Will Learn

- Classify polygons.
- Find perimeters and areas of polygons in the coordinate plane.

Polygons

In geometry, a figure that lies in a plane is called a plane figure. Recall that a polygon is a closed plane figure formed by three or more line segments called sides. Each side intersects exactly two sides, one at each vertex, so that no two sides with a common vertex are collinear. You can name a polygon by listing the vertices in consecutive order.

Classify each polygon by the number of
sides. Tell whether it is convex or concave.
a.

b.

Concave 12-gon

Find the perimeter of $\triangle P Q R$ with
vertices $P(-1,4), Q(2,4)$, and $R(2,-1)$.

Find the perimeter of the polygon with the following vertices.
3. $D(-3,2), E(4,2), F(4,-3)$

$$
\sqrt{74} \approx 8.6
$$

$$
0.70
$$

$$
P=7+5+\sqrt{24}
$$

$$
\frac{+5+\sqrt{24}}{12+\sqrt{74}} \approx 20.6
$$

$$
\frac{P=7+5+\sqrt{74}}{12+\sqrt{74}} \approx 20.6
$$

Find the area of $\triangle A B C$ with vertices $A(1,3), B(3,-3)$, and $C(-2,-3)$.
$A_{A S C}=b L \frac{1}{2}=\frac{1}{2} b h=\frac{b h}{2}$
$A_{A B L}=\frac{1}{2} \cdot 5 \cdot 6$

$$
\begin{aligned}
& b=5 \\
& h=6
\end{aligned}
$$

Find the area of the polygon with the

 following vertices.7. $G(2,2), H(3,-1), J(-2,-1)$
$A_{G H S}=\frac{1}{2} \cdot 5 \cdot 3$

- $\frac{1}{2} \cdot 15$

$$
f_{6 H J}=\frac{15}{2}=7.5
$$

$b=5$
$h=3$

You are making a banner for the school basketball game. The diagram shows the four vertices of the banner. Each unit in the coordinate plane represents 1 foot. Find the area of the banner.

Practice sec 1.4
pg. 34: 1-6A, 7-23EOO

