What You Will Learn

- Find segment lengths using midpoints and segment bisectors.
- Use the Midpoint Formula.
- Use the Distance Formula.

Midpoints and Segment Bisectors

The midpoint of a segment is the point that divides the segment into two congruent segments.

M is the midpoint of $\overline{A B}$.
So, $\overline{A M} \cong \overline{M B}$ and $A M=M B$.
A segment bisector is a point, ray, line, line segment, or plane that intersects the segment at its midpoint. A midpoint or a segment bisector bisects a segment.

In the figure, $P M=1.8 \mathrm{~mm}$. Identify the segment bisector of $\overline{P Q}$. Then find $P Q$.

$$
\begin{aligned}
& \text { Bisector } \rightarrow \begin{array}{rl}
\overrightarrow{m T} \\
& \\
\frac{m}{m m} \\
P Q & 3.6 \mathrm{~mm}
\end{array} \\
& \hline
\end{aligned}
$$

Point M is the midpoint of $\overline{A B}$. Find the length of $\overline{A B}$.

(2.) Identify the segment bisector of $\overline{P Q}$. Then find $M Q$.

$$
\begin{gathered}
11-2 x ; \\
11-2 \cdot 2 \\
11-4 \\
-2 x_{0}
\end{gathered}
$$

$$
3 x-4=2 x+1 \quad 2 x+1 ; x=5
$$

$$
\begin{array}{lll}
3 x-4=-2 x+1 & 2 x+1 ; x=3 \\
-2 x & 2 \cdot 5+1
\end{array} \quad \text { Sej.bisectar } \rightarrow l
$$

$$
\begin{aligned}
& x-4=1 \\
& x+4 \\
& x=5
\end{aligned}
$$

$$
2 \cdot 5+1
$$

$$
\begin{aligned}
& 5 x-3=11-2 x \\
& +2 y+2
\end{aligned}
$$

$$
7 x>5=11
$$

$$
+3+3
$$

$$
\frac{7 x}{7}=\frac{111}{7}
$$

$$
x=2
$$

Using the Midpoint Formula
You can use the coordinates of the endpoints of a segment to find the coordinates of the midpoint.

The Midpoint Formula
The coordinates of the midpoint of a segment are the averages of the x-coordinates and of the y-coordinates of the endpoints.

If $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ are points in a coordinate plane, then the midpoint M of $\overline{A B}$ has coordinates

$$
M_{(x, y)}=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) .
$$

a. The endpoints of $\overline{A B}$ are $\frac{1}{A}(-8,7)$ and $2 B(5,1)$. Find the coordinates of the midpoint M.
$m=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
b. The midpoint of $\overline{P Q}$ is $M(2,-3)$. One endpoint is $P(4,1)$. Find the coordinates of endpoint Q^{2}.

$$
m=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

$$
2(2)=\left(\frac{4+x_{2}}{x}\right) x \quad 2(-3)=\left(\frac{1+y_{2}}{x}\right) x
$$

$$
4=x_{1}+x_{2} \quad-6=x+y_{2}
$$

$$
4-4
$$

$$
-1>1
$$

$$
0=x_{2}
$$

$$
-7=y_{2}
$$

6. The endpoints of $\overline{C D}$ are $\stackrel{C}{C}(-4,3)$ and ${ }^{2}(-6,5)$. Find the coordinates of the

$$
\begin{array}{lr}
\text { midpoint } M . \\
m_{(x, y)}=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)(-5,4) \quad y_{n}=\frac{3+5}{2} \\
X_{m}=\frac{-4+-6}{2} & m=(-5,4)=4
\end{array}
$$

7. The midpoint of $\overline{T U}$ is $M(2,4)$. One endpoint is $T(1,1)$. Find the coordinates of

$$
\begin{array}{rlr}
\left.\frac{\text { endpoint } U_{1}}{m_{\left(x_{1}\right)}:\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)} \begin{array}{rl}
4 & =\frac{1+y_{2}}{2} \\
8 & =1+y \\
-1 & 2
\end{array}\right)=\frac{1+x_{2}}{2} \\
7 & =y & 4 \\
-1+x_{2} \\
\hline & 3 & =1=(3,7))
\end{array}
$$

Using the Distance Formula

You can use the Distance Formula to find the distance between two points in a coordinate plane.

The Distance Formula
If $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ are points in a coordinate plane, then the distance between A and B is

$$
\begin{aligned}
& A B=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} . \\
& c^{2}=\sqrt{a^{2}+b^{2}} \\
& c^{2}=a^{2}+b^{2}
\end{aligned}
$$

You bicycle 5 miles east and then 2 miles north from your apartment to a friend's house. Estimate the distance between your friend's house and your school.

Your school is 4 miles east and 1 mile south of your apartment. A park is 3 miles east and 4 miles south of your apartment. Find the distance between the park and your apartment.

$$
\begin{aligned}
& A P=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(3-0)^{2}+(-4-0)^{2}} \\
& \sqrt{(3)^{2}+(-4)^{2}} \\
& \sqrt{9+16}
\end{aligned}
$$

$$
\begin{array}{cc}
p(3,-4) & \sqrt{25} \\
2 & k
\end{array}
$$

$$
\begin{array}{rr}
\dot{p}(3,-4) & \sqrt{25} \\
2 & \frac{5}{2} \\
& A P=5
\end{array}
$$

Practice sec 1.3
pg. 24: 1-9EO,
15-29EO, 46-49A

