What You Will Learn

Use the Side-Side-Side Similarity Theorem.
Use the Side-Angle-Side Similarity Theorem.

$$
\begin{aligned}
& \frac{A B}{X Y}=\frac{\Delta C}{4 z}=\frac{A C}{X Z} \\
& \frac{3}{6}=\frac{4}{8}=\frac{5}{10} \\
& \frac{1}{2}=\frac{1}{2}=\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \triangle A B C \sim \triangle X Y Z \\
& \frac{A B}{X Y}=\frac{\Delta C}{4 Z}=\frac{A C}{X Z} \\
& \frac{3}{3}=\frac{4}{4}=\frac{5}{5} \\
& 1=1=1
\end{aligned}
$$

Theorem 8.4 Side-Side-Side (SSS) Similarity Theorem
If the corresponding side lengths of two triangles are proportional, then the triangles are similar.

If $\frac{A B}{R S}=\frac{B C}{S T}=\frac{C A}{T R}$, then $\triangle A B C \sim \triangle R S T$.

Is either $\triangle P Q R$ or $\triangle S T U$ similar to $\triangle V W X$?

$$
\frac{V W}{P Q}=\frac{W x}{Q R}=\frac{V x}{P R}
$$

$v w x \sim \triangle S T U$

$$
\frac{V w}{S T}=\frac{w x}{T U}=\frac{V x}{S U}
$$

Is either $\triangle P Q R$ or $\triangle S T U$ similar to $\triangle V W X$?

$\triangle V \omega x \nsim \triangle P Q R \quad \triangle V \omega x \sim \triangle S T U$

$$
\frac{V w}{P Q}=\frac{L x}{Q R}=\frac{V x}{P R} \quad \frac{V w}{S T}=\frac{w x}{T U}=\frac{V x}{S U}
$$

$$
\begin{array}{ll}
\frac{8}{12}=\frac{8}{12}=\frac{12}{16} & \frac{8}{20}=\frac{8}{20}=\frac{12}{30} \\
\frac{2}{3}=\frac{2}{3}+\frac{3}{4} & \frac{2}{5}=\frac{2}{5}=\frac{2}{5}
\end{array}
$$

Not ~

$$
\left.\Delta v w x \nsim \Delta+s v^{16}\right)^{R}
$$

$$
\frac{V W}{T S}=\frac{\omega x}{S U}=\frac{V x}{T V}
$$

$$
\frac{8}{20}=\frac{8}{30}=\frac{12}{20}
$$

Be Careful üj

Find the value of x that makes

$$
\frac{X Y}{H J}=\frac{Y z}{J K}=\frac{X Z}{H K}
$$

$$
\begin{aligned}
& \frac{3}{15}=\frac{5}{5(x-6)}=\frac{x-5}{30} \\
& \frac{1}{5}=\frac{5}{5(x-6)}=\frac{x-5}{30} \rightarrow \frac{1}{5}=\frac{5}{5(1-6)}=\frac{11-5}{30} \\
& \frac{1}{5}=\frac{x-5}{30} \\
& \frac{1}{5}=\frac{5}{25}=\frac{c}{30} \\
& \frac{1}{5}=\frac{1}{5}=\frac{1}{5}=\frac{1}{5}
\end{aligned}
$$

$$
\begin{gathered}
x-5=6 \\
+5
\end{gathered}
$$

Theorem 8.5 Side-Angle-Side (SAS) Similarity Theorem

If an angle of one triangle is congruent to an angle of a second triangle and the lengths of the sides including these angles are proportional, then the triangles are similar.

If $\angle X \cong \angle M$ and $\frac{Z X}{P M}=\frac{X Y}{M N}$, then $\triangle X Y Z \sim \triangle M N P$.

The diagram is a scale drawing of a triangular roof truss. The lengths of the two upper sides of the actual truss are 18 feet and 40 feet. The actual truss and the scale drawing both have an included angle of 110°. Is the scale drawing of the truss similar to the actual truss? Explain.

$$
\frac{40 \mathrm{ft}}{10 \mathrm{in}}=\frac{18 \mathrm{ft}}{6 \mathrm{in}}
$$

6 in.

Triangle Similarity Theorems

AA Similarity Theorem

If $\angle A \cong \angle D$ and $\angle B \cong \angle E$, then $\triangle A B C \sim \triangle D E F$.

SSS Similarity Theorem

If $\frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D F}$, then $\triangle A B C-\triangle \overline{D E F}$.

SAS Similarity Theorem

If $\angle A \cong \angle D$ and $\frac{A B}{D E}=\frac{A C}{D F}$, then $\triangle A B C \sim \triangle D E F$.

Thu
soult word is.

Zebra

Practice sec 8.3 pg . 441: 2-18A

